# Better Flow Matching UniPC by Lvmin Zhang # (c) 2025 # CC BY-SA 4.0 # Attribution-ShareAlike 4.0 International Licence import torch from tqdm.auto import trange def expand_dims(v, dims): return v[(...,) + (None,) * (dims - 1)] class FlowMatchUniPC: def __init__(self, model, extra_args, variant='bh1'): self.model = model self.variant = variant self.extra_args = extra_args def model_fn(self, x, t): return self.model(x, t, **self.extra_args) def update_fn(self, x, model_prev_list, t_prev_list, t, order): assert order <= len(model_prev_list) dims = x.dim() t_prev_0 = t_prev_list[-1] lambda_prev_0 = - torch.log(t_prev_0) lambda_t = - torch.log(t) model_prev_0 = model_prev_list[-1] h = lambda_t - lambda_prev_0 rks = [] D1s = [] for i in range(1, order): t_prev_i = t_prev_list[-(i + 1)] model_prev_i = model_prev_list[-(i + 1)] lambda_prev_i = - torch.log(t_prev_i) rk = ((lambda_prev_i - lambda_prev_0) / h)[0] rks.append(rk) D1s.append((model_prev_i - model_prev_0) / rk) rks.append(1.) rks = torch.tensor(rks, device=x.device) R = [] b = [] hh = -h[0] h_phi_1 = torch.expm1(hh) h_phi_k = h_phi_1 / hh - 1 factorial_i = 1 if self.variant == 'bh1': B_h = hh elif self.variant == 'bh2': B_h = torch.expm1(hh) else: raise NotImplementedError('Bad variant!') for i in range(1, order + 1): R.append(torch.pow(rks, i - 1)) b.append(h_phi_k * factorial_i / B_h) factorial_i *= (i + 1) h_phi_k = h_phi_k / hh - 1 / factorial_i R = torch.stack(R) b = torch.tensor(b, device=x.device) use_predictor = len(D1s) > 0 if use_predictor: D1s = torch.stack(D1s, dim=1) if order == 2: rhos_p = torch.tensor([0.5], device=b.device) else: rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1]) else: D1s = None rhos_p = None if order == 1: rhos_c = torch.tensor([0.5], device=b.device) else: rhos_c = torch.linalg.solve(R, b) x_t_ = expand_dims(t / t_prev_0, dims) * x - expand_dims(h_phi_1, dims) * model_prev_0 if use_predictor: pred_res = torch.tensordot(D1s, rhos_p, dims=([1], [0])) else: pred_res = 0 x_t = x_t_ - expand_dims(B_h, dims) * pred_res model_t = self.model_fn(x_t, t) if D1s is not None: corr_res = torch.tensordot(D1s, rhos_c[:-1], dims=([1], [0])) else: corr_res = 0 D1_t = (model_t - model_prev_0) x_t = x_t_ - expand_dims(B_h, dims) * (corr_res + rhos_c[-1] * D1_t) return x_t, model_t def sample(self, x, sigmas, callback=None, disable_pbar=False): order = min(3, len(sigmas) - 2) model_prev_list, t_prev_list = [], [] for i in trange(len(sigmas) - 1, disable=disable_pbar): vec_t = sigmas[i].expand(x.shape[0]) if i == 0: model_prev_list = [self.model_fn(x, vec_t)] t_prev_list = [vec_t] elif i < order: init_order = i x, model_x = self.update_fn(x, model_prev_list, t_prev_list, vec_t, init_order) model_prev_list.append(model_x) t_prev_list.append(vec_t) else: x, model_x = self.update_fn(x, model_prev_list, t_prev_list, vec_t, order) model_prev_list.append(model_x) t_prev_list.append(vec_t) model_prev_list = model_prev_list[-order:] t_prev_list = t_prev_list[-order:] if callback is not None: callback({'x': x, 'i': i, 'denoised': model_prev_list[-1]}) return model_prev_list[-1] def sample_unipc(model, noise, sigmas, extra_args=None, callback=None, disable=False, variant='bh1'): assert variant in ['bh1', 'bh2'] return FlowMatchUniPC(model, extra_args=extra_args, variant=variant).sample(noise, sigmas=sigmas, callback=callback, disable_pbar=disable)