import os import io import gradio as gr import torch import numpy as np import re import pronouncing # Add this to requirements.txt for syllable counting import functools # Add this for lru_cache functionality from transformers import ( AutoModelForAudioClassification, AutoFeatureExtractor, AutoTokenizer, pipeline, AutoModelForCausalLM, BitsAndBytesConfig ) from huggingface_hub import login from utils import ( load_audio, extract_audio_duration, extract_mfcc_features, calculate_lyrics_length, format_genre_results, ensure_cuda_availability, preprocess_audio_for_model ) from emotionanalysis import MusicAnalyzer import librosa # Login to Hugging Face Hub if token is provided if "HF_TOKEN" in os.environ: login(token=os.environ["HF_TOKEN"]) # Constants GENRE_MODEL_NAME = "dima806/music_genres_classification" MUSIC_DETECTION_MODEL = "MIT/ast-finetuned-audioset-10-10-0.4593" LLM_MODEL_NAME = "Qwen/Qwen3-14B" SAMPLE_RATE = 22050 # Standard sample rate for audio processing # Check CUDA availability (for informational purposes) CUDA_AVAILABLE = ensure_cuda_availability() # Create music detection pipeline print(f"Loading music detection model: {MUSIC_DETECTION_MODEL}") try: music_detector = pipeline( "audio-classification", model=MUSIC_DETECTION_MODEL, device=0 if CUDA_AVAILABLE else -1 ) print("Successfully loaded music detection pipeline") except Exception as e: print(f"Error creating music detection pipeline: {str(e)}") # Fallback to manual loading try: music_processor = AutoFeatureExtractor.from_pretrained(MUSIC_DETECTION_MODEL) music_model = AutoModelForAudioClassification.from_pretrained(MUSIC_DETECTION_MODEL) print("Successfully loaded music detection model and feature extractor") except Exception as e2: print(f"Error loading music detection model components: {str(e2)}") raise RuntimeError(f"Could not load music detection model: {str(e2)}") # Create genre classification pipeline print(f"Loading audio classification model: {GENRE_MODEL_NAME}") try: genre_classifier = pipeline( "audio-classification", model=GENRE_MODEL_NAME, device=0 if CUDA_AVAILABLE else -1 ) print("Successfully loaded audio classification pipeline") except Exception as e: print(f"Error creating pipeline: {str(e)}") # Fallback to manual loading try: genre_processor = AutoFeatureExtractor.from_pretrained(GENRE_MODEL_NAME) genre_model = AutoModelForAudioClassification.from_pretrained(GENRE_MODEL_NAME) print("Successfully loaded audio classification model and feature extractor") except Exception as e2: print(f"Error loading model components: {str(e2)}") raise RuntimeError(f"Could not load genre classification model: {str(e2)}") # Load LLM with appropriate quantization for T4 GPU bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16, ) llm_tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL_NAME) llm_model = AutoModelForCausalLM.from_pretrained( LLM_MODEL_NAME, device_map="auto", quantization_config=bnb_config, torch_dtype=torch.float16, ) # Create LLM pipeline llm_pipeline = pipeline( "text-generation", model=llm_model, tokenizer=llm_tokenizer, max_new_tokens=512, ) # Initialize music emotion analyzer music_analyzer = MusicAnalyzer() # New function: Count syllables in text def count_syllables(text): """Count syllables in a given text using the pronouncing library.""" words = re.findall(r'\b[a-zA-Z]+\b', text.lower()) syllable_count = 0 for word in words: # Get pronunciations for the word pronunciations = pronouncing.phones_for_word(word) if pronunciations: # Count syllables in the first pronunciation syllable_count += pronouncing.syllable_count(pronunciations[0]) else: # Fallback: estimate syllables based on vowel groups vowels = "aeiouy" count = 0 prev_is_vowel = False for char in word: is_vowel = char.lower() in vowels if is_vowel and not prev_is_vowel: count += 1 prev_is_vowel = is_vowel if word.endswith('e'): count -= 1 if word.endswith('le') and len(word) > 2 and word[-3] not in vowels: count += 1 if count == 0: count = 1 syllable_count += count return syllable_count def extract_audio_features(audio_file): """Extract audio features from an audio file.""" try: # Load the audio file using utility function y, sr = load_audio(audio_file, SAMPLE_RATE) if y is None or sr is None: raise ValueError("Failed to load audio data") # Get audio duration in seconds duration = extract_audio_duration(y, sr) # Extract MFCCs for genre classification (may not be needed with the pipeline) mfccs_mean = extract_mfcc_features(y, sr, n_mfcc=20) return { "features": mfccs_mean, "duration": duration, "waveform": y, "sample_rate": sr, "path": audio_file # Keep path for the pipeline } except Exception as e: print(f"Error extracting audio features: {str(e)}") raise ValueError(f"Failed to extract audio features: {str(e)}") def classify_genre(audio_data): """Classify the genre of the audio using the loaded model.""" try: # First attempt: Try using the pipeline if available if 'genre_classifier' in globals(): results = genre_classifier(audio_data["path"]) # Transform pipeline results to our expected format top_genres = [(result["label"], result["score"]) for result in results[:3]] return top_genres # Second attempt: Use manually loaded model components elif 'genre_processor' in globals() and 'genre_model' in globals(): # Process audio input with feature extractor inputs = genre_processor( audio_data["waveform"], sampling_rate=audio_data["sample_rate"], return_tensors="pt" ) with torch.no_grad(): outputs = genre_model(**inputs) predictions = outputs.logits.softmax(dim=-1) # Get the top 3 genres values, indices = torch.topk(predictions, 3) # Map indices to genre labels genre_labels = genre_model.config.id2label top_genres = [] for i, (value, index) in enumerate(zip(values[0], indices[0])): genre = genre_labels[index.item()] confidence = value.item() top_genres.append((genre, confidence)) return top_genres else: raise ValueError("No genre classification model available") except Exception as e: print(f"Error in genre classification: {str(e)}") # Fallback: return a default genre if everything fails return [("rock", 1.0)] def detect_music(audio_data): """Detect if the audio is music using the MIT AST model.""" try: # First attempt: Try using the pipeline if available if 'music_detector' in globals(): results = music_detector(audio_data["path"]) # Look for music-related classes in the results music_confidence = 0.0 for result in results: label = result["label"].lower() if any(music_term in label for music_term in ["music", "song", "singing", "instrument"]): music_confidence = max(music_confidence, result["score"]) return music_confidence >= 0.2, results # Second attempt: Use manually loaded model components elif 'music_processor' in globals() and 'music_model' in globals(): # Process audio input with feature extractor inputs = music_processor( audio_data["waveform"], sampling_rate=audio_data["sample_rate"], return_tensors="pt" ) with torch.no_grad(): outputs = music_model(**inputs) predictions = outputs.logits.softmax(dim=-1) # Get the top predictions values, indices = torch.topk(predictions, 5) # Map indices to labels labels = music_model.config.id2label # Check for music-related classes music_confidence = 0.0 results = [] for i, (value, index) in enumerate(zip(values[0], indices[0])): label = labels[index.item()].lower() score = value.item() results.append({"label": label, "score": score}) if any(music_term in label for music_term in ["music", "song", "singing", "instrument"]): music_confidence = max(music_confidence, score) return music_confidence >= 0.2, results else: raise ValueError("No music detection model available") except Exception as e: print(f"Error in music detection: {str(e)}") return False, [] def detect_beats(y, sr): """Enhanced beat detection with adaptive threshold analysis and improved time signature detection.""" # STEP 1: Improved pre-processing with robustness for quiet sections # Apply a small floor to avoid division-by-zero issues y = np.clip(y, 1e-10, None) # Prevent extreme quiet sections from causing NaN # Separate harmonic and percussive components y_harmonic, y_percussive = librosa.effects.hpss(y) # Generate multiple onset envelopes with smoothing for stability onset_env_full = librosa.onset.onset_strength(y=y, sr=sr) onset_env_perc = librosa.onset.onset_strength(y=y_percussive, sr=sr) # Apply small smoothing to handle quiet sections onset_env_full = np.maximum(onset_env_full, 1e-6) # Minimum threshold to avoid NaN onset_env_perc = np.maximum(onset_env_perc, 1e-6) # Create weighted combination combined_onset = onset_env_full * 0.3 + onset_env_perc * 0.7 # STEP 2: Multi-strategy tempo and beat detection tempo_candidates = [] beat_candidates = [] # Strategy 1: Standard detection tempo1, beats1 = librosa.beat.beat_track( onset_envelope=combined_onset, sr=sr, tightness=100 # More sensitive tracking ) tempo_candidates.append(tempo1) beat_candidates.append(beats1) # Strategy 2: Try with different tempo range for complex signatures tempo2, beats2 = librosa.beat.beat_track( onset_envelope=combined_onset, sr=sr, tightness=100, start_bpm=60, # Lower starting BPM helps find different time signatures std_bpm=20 # Allow wider variations ) tempo_candidates.append(tempo2) beat_candidates.append(beats2) # Select the best strategy based on consistency beat_consistency = [] for beats in beat_candidates: if len(beats) <= 1: beat_consistency.append(0) continue times = librosa.frames_to_time(beats, sr=sr) intervals = np.diff(times) # More consistent beats have lower variance in intervals if np.mean(intervals) > 0: consistency = 1.0 / (1.0 + np.std(intervals)/np.mean(intervals)) beat_consistency.append(consistency) else: beat_consistency.append(0) best_idx = np.argmax(beat_consistency) if beat_consistency else 0 tempo = tempo_candidates[best_idx] beat_frames = beat_candidates[best_idx] # STEP 3: Performance optimization with vectorized operations beat_times = librosa.frames_to_time(beat_frames, sr=sr) # Vectorized extraction of beat strengths instead of loop beat_strengths = [] if len(beat_frames) > 0: # Filter out beat frames that exceed the onset envelope length valid_frames = [frame for frame in beat_frames if frame < len(combined_onset)] if valid_frames: # Vectorized extraction of valid beat strengths beat_strengths = combined_onset[valid_frames].tolist() # Handle any remaining beats avg_strength = np.mean(beat_strengths) if beat_strengths else 1.0 beat_strengths.extend([avg_strength] * (len(beat_times) - len(beat_strengths))) else: beat_strengths = [1.0] * len(beat_times) else: beat_strengths = [1.0] * len(beat_times) # STEP 4: Calculate intervals between beats intervals = np.diff(beat_times).tolist() if len(beat_times) > 1 else [] # STEP 5: Improved time signature detection for various patterns # Start with default assumption time_signature = 4 if len(beat_strengths) > 8: # Use autocorrelation to find periodicity in beat strengths if len(beat_strengths) > 4: # Normalize beat strengths for better pattern detection norm_strengths = np.array(beat_strengths) if np.max(norm_strengths) > 0: norm_strengths = norm_strengths / np.max(norm_strengths) # Compute autocorrelation to find periodic patterns (N) ac = librosa.autocorrelate(norm_strengths, max_size=len(norm_strengths)//2) # Find peaks in autocorrelation (indicates periodicity) if len(ac) > 3: # Need enough data for peak picking # Find peaks after lag 0 peaks = librosa.util.peak_pick(ac[1:], pre_max=1, post_max=1, pre_avg=1, post_avg=1, delta=0.1, wait=1) peaks = peaks + 1 # Adjust for the removed lag 0 if len(peaks) > 0: # Get the first significant peak position (cycle length N) N = peaks[0] # Map common cycle lengths to time signatures if 2 <= N <= 3: time_signature = N # Direct mapping for simple cases elif N == 6: time_signature = 3 # Could be 6/8 or 3/4 with subdivisions elif N == 8: time_signature = 4 # Could be 4/4 with subdivisions elif N == 5 or N == 7: time_signature = N # Odd time signatures like 5/4 or 7/8 # Otherwise, keep default 4 # Use adaptive thresholds for pattern detection instead of fixed values if len(beat_strengths) > 3: # Calculate z-scores to identify statistically significant strong beats strengths_array = np.array(beat_strengths) mean_strength = np.mean(strengths_array) std_strength = np.std(strengths_array) if std_strength > 0: z_scores = (strengths_array - mean_strength) / std_strength # Count beats with z-score > 1 in groups of 3 (for 3/4 time) strong_beat_pattern = [] for i in range(0, len(z_scores) - 2, 3): # First beat should be significantly stronger (z > 1) # Second and third beats should be weaker if z_scores[i] > 1 and z_scores[i+1] < 0.5 and z_scores[i+2] < 0.5: strong_beat_pattern.append(1) else: strong_beat_pattern.append(0) # Check if we have a clear 3/4 pattern if strong_beat_pattern and len(strong_beat_pattern) >= 3: three_pattern_probability = sum(strong_beat_pattern) / len(strong_beat_pattern) if three_pattern_probability > 0.6: time_signature = 3 # STEP 6: Enhanced phrase detection with adaptive thresholds phrases = [] current_phrase = [] if len(beat_times) > 0: # Calculate adaptive thresholds using percentiles instead of fixed ratios if len(beat_strengths) > 4: # Define thresholds based on distribution rather than fixed values strong_threshold = np.percentile(beat_strengths, 75) # Top 25% are "strong" beats # For gaps, calculate significant deviation using z-scores if we have intervals if intervals: mean_interval = np.mean(intervals) std_interval = np.std(intervals) # A significant gap is > 1.5 standard deviations above mean significant_gap = mean_interval + (1.5 * std_interval) if std_interval > 0 else mean_interval * 1.3 else: significant_gap = 0 else: # Fallback for limited data strong_threshold = np.max(beat_strengths) * 0.8 if beat_strengths else 1.0 significant_gap = 0 # Identify phrase boundaries for i in range(len(beat_times)): current_phrase.append(i) # Check for phrase boundary conditions if i < len(beat_times) - 1: # Strong beat coming up (using adaptive threshold) is_stronger_next = False if i < len(beat_strengths) - 1: is_stronger_next = beat_strengths[i+1] > strong_threshold and beat_strengths[i+1] > beat_strengths[i] * 1.1 # Significant gap (using adaptive threshold) is_longer_gap = False if i < len(beat_times) - 1 and intervals and i < len(intervals): is_longer_gap = intervals[i] > significant_gap # Measure boundary based on time signature is_measure_boundary = (i + 1) % time_signature == 0 and i > 0 # Combined decision for phrase boundary if ((is_stronger_next or is_longer_gap) and len(current_phrase) >= 2) or \ (is_measure_boundary and len(current_phrase) >= time_signature): phrases.append(current_phrase) current_phrase = [] # Add the last phrase if not empty if current_phrase and len(current_phrase) >= 2: phrases.append(current_phrase) # Ensure we have at least one phrase if not phrases and len(beat_times) >= 2: # Default to grouping by measures based on detected time signature for i in range(0, len(beat_times), time_signature): end = min(i + time_signature, len(beat_times)) if end - i >= 2: # Ensure at least 2 beats per phrase phrases.append(list(range(i, end))) # Return in the original format for compatibility return { "tempo": tempo, "beat_frames": beat_frames, "beat_times": beat_times, "beat_count": len(beat_times), "beat_strengths": beat_strengths, "intervals": intervals, "time_signature": time_signature, "phrases": phrases } def detect_sections(y, sr): """ Advanced detection of musical sections with adaptive segmentation and improved classification. Parameters: y: Audio time series sr: Sample rate Returns: A list of section dictionaries with type, start time, end time, and duration """ # Step 1: Extract rich feature set for comprehensive analysis # ---------------------------------------------------------------------- hop_length = 512 # Common hop length for feature extraction # Spectral features S = np.abs(librosa.stft(y, hop_length=hop_length)) contrast = librosa.feature.spectral_contrast(S=S, sr=sr) # Harmonic features with CQT-based chroma (better for harmonic analysis) chroma = librosa.feature.chroma_cqt(y=y, sr=sr, hop_length=hop_length) # Timbral features mfcc = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13, hop_length=hop_length) # Energy features rms = librosa.feature.rms(y=y, hop_length=hop_length) # Harmonic-percussive source separation for better rhythm analysis y_harmonic, y_percussive = librosa.effects.hpss(y) percussive_rms = librosa.feature.rms(y=y_percussive, hop_length=hop_length) # Step 2: Adaptive determination of segment count based on song complexity # ---------------------------------------------------------------------- duration = librosa.get_duration(y=y, sr=sr) # Feature preparation for adaptive segmentation # Stack features with proper normalization (addressing the scale issue) feature_stack = np.vstack([ librosa.util.normalize(contrast), librosa.util.normalize(chroma), librosa.util.normalize(mfcc), librosa.util.normalize(rms) ]) # Transpose to get time as first dimension feature_matrix = feature_stack.T # Step 3: Feature fusion using dimensionality reduction (addressing simple summation issue) # ---------------------------------------------------------------------- # Apply PCA to reduce dimensionality while preserving relationships from sklearn.decomposition import PCA # Handle very short audio files n_components = min(8, feature_matrix.shape[0], feature_matrix.shape[1]) if feature_matrix.shape[0] > n_components and feature_matrix.shape[1] > 0: try: pca = PCA(n_components=n_components) reduced_features = pca.fit_transform(feature_matrix) except Exception as e: print(f"PCA failed, falling back to original features: {e}") # Fallback to simpler approach if PCA fails reduced_features = feature_matrix else: # Not enough data for PCA reduced_features = feature_matrix # Step 4: Adaptive determination of optimal segment count # ---------------------------------------------------------------------- # Initialize range of segment counts to try min_segments = max(2, int(duration / 60)) # At least 2 segments, roughly 1 per minute max_segments = min(10, int(duration / 20)) # At most 10 segments, roughly 1 per 20 seconds # Ensure reasonable bounds min_segments = max(2, min(min_segments, 4)) max_segments = max(min_segments + 1, min(max_segments, 8)) # Try different segment counts and evaluate with silhouette score best_segments = min_segments best_score = -1 from sklearn.metrics import silhouette_score from sklearn.cluster import AgglomerativeClustering # Only do this analysis if we have enough data if reduced_features.shape[0] > max_segments: for n_segments in range(min_segments, max_segments + 1): try: # Perform agglomerative clustering clustering = AgglomerativeClustering(n_clusters=n_segments) labels = clustering.fit_predict(reduced_features) # Calculate silhouette score if we have enough samples if len(np.unique(labels)) > 1 and len(labels) > n_segments + 1: score = silhouette_score(reduced_features, labels) if score > best_score: best_score = score best_segments = n_segments except Exception as e: print(f"Clustering with {n_segments} segments failed: {e}") continue # Use the optimal segment count for final segmentation n_segments = best_segments # Step 5: Final segmentation using the optimal segment count # ---------------------------------------------------------------------- # Method 1: Use agglomerative clustering on the reduced features try: clustering = AgglomerativeClustering(n_clusters=n_segments) labels = clustering.fit_predict(reduced_features) # Convert cluster labels to boundaries by finding where labels change boundaries = [0] # Start with the beginning for i in range(1, len(labels)): if labels[i] != labels[i-1]: boundaries.append(i) boundaries.append(len(labels)) # Add the end # Convert to frames bounds_frames = np.array(boundaries) except Exception as e: print(f"Final clustering failed: {e}") # Fallback to librosa's agglomerative clustering on original features bounds_frames = librosa.segment.agglomerative(feature_stack, n_segments) # Step 6: Detect harmonic changes for better bridge identification # ---------------------------------------------------------------------- # Calculate tonal centroids to identify key changes tonnetz = librosa.feature.tonnetz(y=y_harmonic, sr=sr) # Look for significant changes in harmonic content harmonic_changes = [] if tonnetz.shape[1] > 1: tonnetz_diff = np.sum(np.abs(np.diff(tonnetz, axis=1)), axis=0) # Normalize if np.max(tonnetz_diff) > 0: tonnetz_diff = tonnetz_diff / np.max(tonnetz_diff) # Identify significant harmonic changes (potential bridges or section changes) threshold = np.percentile(tonnetz_diff, 90) # Top 10% most significant changes for i in range(len(tonnetz_diff)): if tonnetz_diff[i] > threshold: harmonic_changes.append(i) # Step 7: Convert boundaries to time and create sections # ---------------------------------------------------------------------- bounds_times = librosa.frames_to_time(bounds_frames, sr=sr, hop_length=hop_length) # Create sections from the boundaries sections = [] for i in range(len(bounds_times) - 1): start = bounds_times[i] end = bounds_times[i+1] duration = end - start # Skip extremely short sections if duration < 4 and i > 0 and i < len(bounds_times) - 2: continue # Step 8: Section type classification with improved musical features # ---------------------------------------------------------------------- # Get indices for this section start_idx = bounds_frames[i] end_idx = bounds_frames[i+1] # Basic section type based on position if i == 0: section_type = "intro" elif i == len(bounds_times) - 2: section_type = "outro" else: # Default to alternating verse/chorus section_type = "chorus" if i % 2 == 1 else "verse" # Only analyze characteristics if we have enough frames if end_idx > start_idx: # Calculate musical characteristics for this section # 1. Energy profile energy = np.mean(rms[0, start_idx:end_idx]) # 2. Rhythm intensity (percussive content) rhythm_intensity = np.mean(percussive_rms[0, start_idx:end_idx]) # 3. Harmonic complexity if chroma.shape[1] > 0: chroma_var = np.var(chroma[:, start_idx:end_idx]) else: chroma_var = 0 # 4. Timbral characteristics if mfcc.shape[1] > 0: mfcc_mean = np.mean(mfcc[:, start_idx:end_idx], axis=1) mfcc_var = np.var(mfcc[:, start_idx:end_idx], axis=1) else: mfcc_mean = np.zeros(mfcc.shape[0]) mfcc_var = np.zeros(mfcc.shape[0]) # 5. Check for harmonic changes within this section (for bridge detection) has_harmonic_change = False for change_idx in harmonic_changes: if start_idx <= change_idx < end_idx: has_harmonic_change = True break # Calculate relative metrics by comparing to the entire song relative_energy = energy / np.mean(rms) relative_rhythm = rhythm_intensity / np.mean(percussive_rms) # Improved section type classification: # Chorus: High energy, strong rhythm, less harmonic variation if (relative_energy > 1.1 and relative_rhythm > 1.1 and section_type != "intro" and section_type != "outro"): section_type = "chorus" # Verse: Moderate energy, moderate rhythm, more harmonic variation elif (0.8 <= relative_energy <= 1.1 and chroma_var > np.mean(np.var(chroma, axis=1)) and section_type != "intro" and section_type != "outro"): section_type = "verse" # Bridge: Often has harmonic changes, energy drop, or unique timbral characteristics if (section_type not in ["intro", "outro"] and (has_harmonic_change or (0.5 <= relative_energy <= 0.9 and duration < 30) or np.any(mfcc_var > np.percentile(np.var(mfcc, axis=1), 75)))): section_type = "bridge" # Add section to the list sections.append({ "type": section_type, "start": start, "end": end, "duration": duration }) # Post-processing: Ensure reasonable section sequence and durations for i in range(1, len(sections) - 1): # Check for unreasonably short sections and merge them if sections[i]["duration"] < 8 and sections[i]["type"] not in ["intro", "outro", "bridge"]: # Either merge with previous or next section based on similarity prev_type = sections[i-1]["type"] next_type = sections[i+1]["type"] if i+1 < len(sections) else "outro" # Default to merging with the previous section sections[i]["type"] = prev_type # Filter out any remaining extremely short sections sections = [s for s in sections if s["duration"] >= 5 or s["type"] == "intro" or s["type"] == "outro"] return sections def create_flexible_syllable_templates(beats_info, genre=None, phrase_mode='default'): """ Create enhanced syllable templates based on beat patterns with improved musical intelligence. Parameters: beats_info: Dictionary containing beat analysis data genre: Optional genre to influence template creation phrase_mode: 'default' uses provided phrases, 'auto' forces recalculation Returns: String of syllable templates with embedded strength values and flexible timing """ import numpy as np from sklearn.cluster import KMeans # Extract basic beat information beat_times = beats_info.get("beat_times", []) beat_strengths = beats_info.get("beat_strengths", [1.0] * len(beat_times)) tempo = beats_info.get("tempo", 120) time_signature = beats_info.get("time_signature", 4) # Early return for insufficient data if len(beat_times) < 2: return "S(1.0):1-w(0.5):1|S(1.0):1-w(0.5):1" # Default fallback pattern # Step 1: Adaptive thresholding using k-means clustering # ---------------------------------------------------------------------- if len(beat_strengths) >= 6: # Need enough data points for clustering # Reshape for k-means X = np.array(beat_strengths).reshape(-1, 1) # Use k-means with 3 clusters for Strong, Medium, Weak classification kmeans = KMeans(n_clusters=3, random_state=0, n_init=10).fit(X) # Find the centroid values and sort them centroids = sorted([float(c[0]) for c in kmeans.cluster_centers_]) # Map to thresholds (using the midpoints between centroids) if len(centroids) >= 3: medium_threshold = (centroids[0] + centroids[1]) / 2 strong_threshold = (centroids[1] + centroids[2]) / 2 else: # Fallback if clustering doesn't work well medium_threshold = np.percentile(beat_strengths, 33) strong_threshold = np.percentile(beat_strengths, 66) else: # For limited data, use percentile-based approach medium_threshold = np.percentile(beat_strengths, 33) strong_threshold = np.percentile(beat_strengths, 66) # Step 2: Create or refine phrases based on mode # ---------------------------------------------------------------------- phrases = beats_info.get("phrases", []) if phrase_mode == 'auto' or not phrases: # Create phrases based on time signature and beat strengths phrases = [] current_phrase = [] for i in range(len(beat_times)): current_phrase.append(i) # Check for natural phrase endings if (i + 1) % time_signature == 0 or i == len(beat_times) - 1: if len(current_phrase) >= 2: # Ensure minimum phrase length phrases.append(current_phrase) current_phrase = [] # Add any remaining beats if current_phrase and len(current_phrase) >= 2: phrases.append(current_phrase) # Step 3: Calculate continuous tempo-to-syllable mapping function # ---------------------------------------------------------------------- def tempo_to_syllable_base(tempo): """Continuous function mapping tempo to syllable base count""" # Sigmoid-like function that smoothly transitions between syllable counts if tempo > 180: return 1.0 elif tempo > 140: return 1.0 + (180 - tempo) * 0.02 # Gradual increase 1.0 → 1.8 elif tempo > 100: return 1.8 + (140 - tempo) * 0.01 # Gradual increase 1.8 → 2.2 elif tempo > 70: return 2.2 + (100 - tempo) * 0.02 # Gradual increase 2.2 → 2.8 else: return 2.8 + max(0, (70 - tempo) * 0.04) # Continue increasing for very slow tempos # Step 4: Generate enhanced templates with flexible timing # ---------------------------------------------------------------------- syllable_templates = [] for phrase in phrases: # Skip empty phrases if not phrase: continue # Extract beat strengths for this phrase phrase_strengths = [beat_strengths[i] for i in phrase if i < len(beat_strengths)] if not phrase_strengths: phrase_strengths = [1.0] * len(phrase) # Apply adaptive thresholding for stress pattern detection stress_pattern = [] for i, strength in enumerate(phrase_strengths): # Consider both strength and metrical position metrical_position = i % time_signature # Apply positional boost for strong metrical positions position_boost = 0.15 if metrical_position == 0 else 0 # Secondary stress on beat 3 in 4/4 time if time_signature == 4 and metrical_position == 2: position_boost = 0.08 effective_strength = strength + position_boost if effective_strength >= strong_threshold: stress_pattern.append(("S", effective_strength)) # Strong beat with strength elif effective_strength >= medium_threshold: stress_pattern.append(("m", effective_strength)) # Medium beat with strength else: stress_pattern.append(("w", effective_strength)) # Weak beat with strength # Step 5: Calculate syllable counts using continuous function # ---------------------------------------------------------------------- detailed_template = [] for i, (stress_type, strength) in enumerate(stress_pattern): # Get base syllable count from tempo base_syllables = tempo_to_syllable_base(tempo) # Adjust based on stress type if stress_type == "S": syllable_factor = 1.2 # More syllables for strong beats elif stress_type == "m": syllable_factor = 1.0 # Normal for medium beats else: syllable_factor = 0.8 # Fewer for weak beats # Apply genre-specific adjustments genre_factor = 1.0 if genre: genre = genre.lower() if any(term in genre for term in ["rap", "hip hop", "hip-hop"]): genre_factor = 1.4 # Much higher syllable density for rap elif any(term in genre for term in ["folk", "country", "ballad"]): genre_factor = 0.8 # Lower density for folk styles # Calculate adjusted syllable count raw_count = base_syllables * syllable_factor * genre_factor # Allow for more flexible syllable counts with non-integer values # Round to multiples of 0.5 for half-syllable precision rounded_count = round(raw_count * 2) / 2 # Limit to reasonable range (0.5 to 4) syllable_count = max(0.5, min(4, rounded_count)) # Format with embedded strength value for reversibility # Convert strength to 2-decimal precision percentage strength_pct = int(strength * 100) / 100 detailed_template.append(f"{stress_type}({strength_pct}):{syllable_count}") # Join beat templates for this phrase phrase_template = "-".join(detailed_template) syllable_templates.append(phrase_template) # Step 6: Ensure valid output with reasonable defaults # ---------------------------------------------------------------------- if not syllable_templates: # Create a sensible default based on time signature if time_signature == 3: syllable_templates = ["S(0.95):2-w(0.4):1-w(0.35):1"] # 3/4 default else: syllable_templates = ["S(0.95):2-w(0.4):1-m(0.7):1.5-w(0.35):1"] # 4/4 default # Join all phrase templates with the original separator for compatibility return "|".join(syllable_templates) def format_syllable_templates_for_prompt(syllable_templates, arrow="→", line_wrap=10, structured_output=False, beat_types=None): """ Convert technical syllable templates into clear, human-readable instructions with enhanced flexibility and customization options. Parameters: syllable_templates: String or list of templates arrow: Symbol to use between beats (default: "→") line_wrap: Number of beats before automatic line wrapping (0 = no wrapping) structured_output: If True, return structured data instead of text beat_types: Custom mapping for beat types (default: None, uses standard mapping) Returns: Human-readable instructions or structured data depending on parameters """ if not syllable_templates: return {} if structured_output else "" # Define standard beat type mapping (extensible) default_beat_types = { "S": {"name": "STRONG", "description": "stressed syllable"}, "m": {"name": "medium", "description": "medium-stressed syllable"}, "w": {"name": "weak", "description": "unstressed syllable"}, "X": {"name": "EXTRA", "description": "extra strong syllable"}, "L": {"name": "legato", "description": "connected/tied syllable"} } # Use custom mapping if provided, otherwise use default beat_types = beat_types or default_beat_types # Initialize structured output if requested structured_data = {"lines": [], "explanations": []} if structured_output else None # Improved format detection - more robust than just checking for "|" is_enhanced_format = False # Check if it's a string with enhanced format patterns if isinstance(syllable_templates, str): # Look for enhanced format patterns - check for beat type indicators if any(bt + "(" in syllable_templates or bt + ":" in syllable_templates or bt + "[" in syllable_templates for bt in beat_types.keys()): is_enhanced_format = True # Secondary check for the "|" delimiter between phrases elif "|" in syllable_templates: is_enhanced_format = True # Initialize the output with a brief explanatory header output = [] if is_enhanced_format: # Split into individual phrase templates phrases = syllable_templates.split("|") if "|" in syllable_templates else [syllable_templates] # Process each phrase into human-readable instructions for i, phrase in enumerate(phrases): # Check for special annotations has_swing = "(swing)" in phrase if has_swing: phrase = phrase.replace("(swing)", "") # Remove annotation for processing beats = phrase.split("-") beat_instructions = [] # Process each beat in the phrase for j, beat in enumerate(beats): # Extract beat type and information beat_info = {"original": beat, "type": None, "count": None, "strength": None} # Handle enhanced format with embedded strength values: S(0.95):2 if "(" in beat and ")" in beat and ":" in beat: parts = beat.split(":") beat_type = parts[0].split("(")[0] # Extract beat type strength = parts[0].split("(")[1].rstrip(")") # Extract strength value count = parts[1] # Extract syllable count beat_info["type"] = beat_type beat_info["count"] = count beat_info["strength"] = strength # Handle simpler format: S2, m1, w1 elif any(beat.startswith(bt) for bt in beat_types.keys()) and len(beat) > 1: beat_type = beat[0] count = beat[1:] beat_info["type"] = beat_type beat_info["count"] = count # Fallback for any other format else: beat_instructions.append(beat) continue # Format the beat instruction based on type if beat_info["type"] in beat_types: type_name = beat_types[beat_info["type"]]["name"] if beat_info["strength"]: beat_instructions.append(f"{type_name}({beat_info['count']}) [{beat_info['strength']}]") else: beat_instructions.append(f"{type_name}({beat_info['count']})") else: # Unknown beat type, use as-is beat_instructions.append(beat) # Handle line wrapping for readability if line_wrap > 0 and len(beat_instructions) > line_wrap: wrapped_instructions = [] for k in range(0, len(beat_instructions), line_wrap): section = beat_instructions[k:k+line_wrap] wrapped_instructions.append(f"{arrow} ".join(section)) line_desc = f"\n {arrow} ".join(wrapped_instructions) else: line_desc = f" {arrow} ".join(beat_instructions) # Add swing notation if present if has_swing: line_desc += " [with swing feel]" # Add to output line_output = f"Line {i+1}: {line_desc}" output.append(line_output) if structured_output: structured_data["lines"].append({ "line_number": i+1, "beats": [{"original": beats[j], "type": beat_info.get("type"), "count": beat_info.get("count"), "strength": beat_info.get("strength")} for j, beat_info in enumerate([b for b in beats if isinstance(b, dict)])], "has_swing": has_swing }) # Add explanation of notation after the lines explanation = [ "\n📝 UNDERSTANDING THE NOTATION:" ] # Add descriptions for each beat type that was actually used used_beat_types = set() for phrase in phrases: for beat in phrase.split("-"): for bt in beat_types.keys(): if beat.startswith(bt): used_beat_types.add(bt) for bt in used_beat_types: if bt in beat_types: name = beat_types[bt]["name"] desc = beat_types[bt]["description"] explanation.append(f"- {name}(n): Place a {desc} here, plus (n-1) unstressed syllables") explanation.extend([ f"- {arrow}: Indicates flow from one beat to the next", "- [0.xx]: Beat strength value (higher = more emphasis needed)" ]) output.extend(explanation) if structured_output: structured_data["explanations"] = explanation # Add examples for half-syllable values if they appear in the templates has_half_syllables = any((".5" in beat) for phrase in phrases for beat in phrase.split("-")) if has_half_syllables: half_syllable_examples = [ "\n🎵 HALF-SYLLABLE EXAMPLES:", "- STRONG(1.5): One stressed syllable followed by an unstressed half-syllable", " Example: \"LOVE you\" where \"LOVE\" is stressed and \"you\" is quick", "- medium(2.5): One medium syllable plus one-and-a-half unstressed syllables", " Example: \"Wait for the\" where \"Wait\" is medium-stressed and \"for the\" is quick" ] output.extend(half_syllable_examples) if structured_output: structured_data["half_syllable_examples"] = half_syllable_examples # Add swing explanation if needed if any("swing" in phrase for phrase in phrases): swing_guide = [ "\n🎶 SWING RHYTHM GUIDE:", "- In swing, syllables should be unevenly timed (long-short pattern)", "- Example: \"SUM-mer TIME\" in swing feels like \"SUM...mer-TIME\" with delay" ] output.extend(swing_guide) if structured_output: structured_data["swing_guide"] = swing_guide # Handle the original format or segment dictionaries else: formatted_lines = [] if isinstance(syllable_templates, list): for i, template in enumerate(syllable_templates): if isinstance(template, dict) and "syllable_template" in template: line = f"Line {i+1}: {template['syllable_template']} syllables" formatted_lines.append(line) if structured_output: structured_data["lines"].append({ "line_number": i+1, "syllable_count": template["syllable_template"] }) elif isinstance(template, str): line = f"Line {i+1}: {template} syllables" formatted_lines.append(line) if structured_output: structured_data["lines"].append({ "line_number": i+1, "syllable_count": template }) output = formatted_lines else: output = [str(syllable_templates)] if structured_output: structured_data["raw_content"] = str(syllable_templates) # Add general application advice application_tips = [ "\n💡 APPLICATION TIPS:", "1. Strong beats need naturally stressed syllables (like the START of \"RE-mem-ber\")", "2. Place important words on strong beats for natural emphasis", "3. Vowel sounds work best for sustained or emphasized syllables", "4. Keep consonant clusters (like \"str\" or \"thr\") on weak beats" ] output.extend(application_tips) if structured_output: structured_data["application_tips"] = application_tips return structured_data return "\n".join(output) def verify_flexible_syllable_counts(lyrics, templates): """ Enhanced verification of syllable counts and stress patterns with precise alignment analysis and detailed feedback for all phrases in a template. """ import re import pronouncing import numpy as np import functools from itertools import chain # Apply caching to improve performance for repeated word lookups @functools.lru_cache(maxsize=512) def cached_phones_for_word(word): return pronouncing.phones_for_word(word) @functools.lru_cache(maxsize=512) def count_syllables_for_word(word): """Count syllables in a single word with caching for performance.""" # Try using pronouncing library first pronunciations = cached_phones_for_word(word.lower()) if pronunciations: return pronouncing.syllable_count(pronunciations[0]) # Fallback method for words not in the pronouncing dictionary vowels = "aeiouy" word = word.lower() count = 0 prev_is_vowel = False for char in word: is_vowel = char in vowels if is_vowel and not prev_is_vowel: count += 1 prev_is_vowel = is_vowel # Handle special cases if word.endswith('e') and not word.endswith('le'): count -= 1 if word.endswith('le') and len(word) > 2 and word[-3] not in vowels: count += 1 if count == 0: count = 1 return count @functools.lru_cache(maxsize=512) def get_word_stress(word): """Get the stress pattern for a word with improved fallback handling.""" pronunciations = cached_phones_for_word(word.lower()) if pronunciations: return pronouncing.stresses(pronunciations[0]) # Enhanced fallback for words not in the dictionary syllables = count_syllables_for_word(word) # Common English stress patterns by word length if syllables == 1: return "1" # Single syllable words are stressed elif syllables == 2: # Most 2-syllable nouns and adjectives stress first syllable # Common endings that indicate second-syllable stress second_syllable_stress = ["ing", "er", "or", "ize", "ise", "ate", "ect", "end", "ure"] if any(word.endswith(ending) for ending in second_syllable_stress): return "01" else: return "10" # Default for 2-syllable words elif syllables == 3: # Common endings for specific stress patterns in 3-syllable words if any(word.endswith(ending) for ending in ["ity", "ety", "ify", "ogy", "graphy"]): return "100" # First syllable stress elif any(word.endswith(ending) for ending in ["ation", "ious", "itis"]): return "010" # Middle syllable stress else: return "100" # Default for 3-syllable words else: # For longer words, use common English patterns return "1" + "0" * (syllables - 1) # Split lyrics into lines lines = [line.strip() for line in lyrics.split("\n") if line.strip()] # Initialize tracking variables verification_notes = [] detailed_analysis = [] stress_misalignments = [] total_mismatch_count = 0 # Process each lyric line against its template for i, line in enumerate(lines): if i >= len(templates): break template = templates[i] # Extract the template string from different possible formats if isinstance(template, dict) and "syllable_template" in template: template_str = template["syllable_template"] elif isinstance(template, str): template_str = template else: continue # Handle multiple phrases in template - process ALL phrases, not just the first template_phrases = [template_str] if "|" in template_str: template_phrases = template_str.split("|") # Check against all phrases and find the best match best_match_diff = float('inf') best_match_phrase = None best_phrase_beats = None actual_count = count_syllables(line) for phrase_idx, phrase in enumerate(template_phrases): # Extract beat patterns and expected syllable counts from template beats_info = [] total_expected = 0 # Enhanced template parsing if "-" in phrase: beat_templates = phrase.split("-") # Parse each beat template for beat in beat_templates: beat_info = {"original": beat, "type": None, "count": 1, "strength": None} # Handle templates with embedded strength values: S(0.95):2 if "(" in beat and ")" in beat and ":" in beat: parts = beat.split(":") beat_type = parts[0].split("(")[0] try: strength = float(parts[0].split("(")[1].rstrip(")")) except ValueError: strength = 1.0 # Handle potential float syllable counts try: count = float(parts[1]) # Convert to int if it's a whole number if count == int(count): count = int(count) except ValueError: count = 1 beat_info.update({ "type": beat_type, "count": count, "strength": strength }) # Handle simple format: S2, m1, w1 elif any(beat.startswith(x) for x in ["S", "m", "w", "X", "L"]): beat_type = beat[0] # Extract count, supporting float values try: count_str = beat[1:] count = float(count_str) if count == int(count): count = int(count) except ValueError: count = 1 beat_info.update({ "type": beat_type, "count": count }) # Legacy format - just numbers else: try: count = float(beat) if count == int(count): count = int(count) beat_info["count"] = count except ValueError: pass beats_info.append(beat_info) total_expected += beat_info["count"] # Compare this phrase to actual syllable count phrase_diff = abs(actual_count - total_expected) # Adaptive threshold based on expected syllables expected_ratio = 0.15 if total_expected > 10 else 0.25 phrase_threshold = max(1, round(total_expected * expected_ratio)) # If this is the best match so far, store it if phrase_diff < best_match_diff: best_match_diff = phrase_diff best_match_phrase = phrase best_phrase_beats = beats_info # For very simple templates without "-" else: try: total_expected = float(phrase) phrase_diff = abs(actual_count - total_expected) if phrase_diff < best_match_diff: best_match_diff = phrase_diff best_match_phrase = phrase best_phrase_beats = [{"count": total_expected}] except ValueError: pass # If we found a reasonable match, proceed with analysis if best_match_phrase and best_phrase_beats: total_expected = sum(beat["count"] for beat in best_phrase_beats) # Calculate adaptive threshold based on expected syllables expected_ratio = 0.15 if total_expected > 10 else 0.25 threshold = max(1, round(total_expected * expected_ratio)) # Check if total syllable count is significantly off if total_expected > 0 and best_match_diff > threshold: verification_notes.append(f"Line {i+1}: Expected {total_expected} syllables, got {actual_count}") total_mismatch_count += 1 # Extract words and perform detailed alignment analysis words = re.findall(r'\b[a-zA-Z]+\b', line.lower()) # Get syllable count and stress for each word word_analysis = [] cumulative_syllables = 0 for word in words: syllable_count = count_syllables_for_word(word) # Get stress pattern stress_pattern = get_word_stress(word) word_analysis.append({ "word": word, "syllables": syllable_count, "stress_pattern": stress_pattern, "position": cumulative_syllables }) cumulative_syllables += syllable_count # Analyze alignment with beats - only if there are beat types if best_phrase_beats and any(b.get("type") == "S" for b in best_phrase_beats if "type" in b): # Identify positions where strong syllables should fall strong_positions = [] current_pos = 0 for beat in best_phrase_beats: if beat.get("type") == "S": strong_positions.append(current_pos) current_pos += beat.get("count", 1) # Check if strong syllables align with strong beats alignment_issues = [] for pos in strong_positions: # Find which word contains this position misaligned_word = None for word_info in word_analysis: word_start = word_info["position"] word_end = word_start + word_info["syllables"] if word_start <= pos < word_end: # Check if a stressed syllable falls on this position syllable_in_word = pos - word_start # Get stress pattern for this word stress = word_info["stress_pattern"] # If we have stress information and this syllable isn't stressed if stress and syllable_in_word < len(stress) and stress[syllable_in_word] != '1': misaligned_word = word_info["word"] alignment_issues.append(f"'{word_info['word']}' (unstressed syllable on strong beat)") stress_misalignments.append({ "line": i+1, "word": word_info["word"], "position": pos, "suggestion": get_stress_aligned_alternatives(word_info["word"], syllable_in_word) }) break if alignment_issues: verification_notes.append(f" → Stress misalignments: {', '.join(alignment_issues)}") # Generate a visual alignment map for better understanding alignment_map = generate_alignment_visualization(line, best_phrase_beats, word_analysis) if alignment_map: detailed_analysis.append(f"Line {i+1} Alignment Analysis:\n{alignment_map}") else: # If no matching template was found verification_notes.append(f"Line {i+1}: Unable to find matching template pattern") # Only add detailed analysis if we have rhythm mismatches if verification_notes: lyrics += "\n\n[Note: Potential rhythm mismatches detected in these lines:]\n" lyrics += "\n".join(verification_notes) if detailed_analysis: lyrics += "\n\n[Detailed Alignment Analysis:]\n" lyrics += "\n\n".join(detailed_analysis) lyrics += "\n\n[How to fix rhythm mismatches:]\n" lyrics += "1. Make sure stressed syllables (like 'LO' in 'LOV-er') fall on STRONG beats\n" lyrics += "2. Adjust syllable counts to match the template (add/remove words or use different words)\n" lyrics += "3. Try using words where natural stress aligns with musical rhythm\n" # Add specific word substitution suggestions if we found stress misalignments if stress_misalignments: lyrics += "\n[Specific word replacement suggestions:]\n" for issue in stress_misalignments[:5]: # Limit to first 5 issues if issue["suggestion"]: lyrics += f"Line {issue['line']}: Consider replacing '{issue['word']}' with: {issue['suggestion']}\n" return lyrics def generate_alignment_visualization(line, beats_info, word_analysis): """Generate a visual representation of syllable alignment with beats.""" if not beats_info or not word_analysis: return None # Create a syllable breakdown with stress information syllable_breakdown = [] syllable_stresses = [] for word_info in word_analysis: word = word_info["word"] syllables = word_info["syllables"] stress = word_info["stress_pattern"] or "" # Extend stress pattern if needed while len(stress) < syllables: stress += "0" # Get syllable breakdown parts = naive_syllable_split(word, syllables) for i, part in enumerate(parts): syllable_breakdown.append(part) if i < len(stress): syllable_stresses.append(stress[i]) else: syllable_stresses.append("0") # Create beat pattern beat_types = [] current_pos = 0 for beat in beats_info: beat_type = beat.get("type", "-") count = beat.get("count", 1) # Handle whole numbers and half syllables if isinstance(count, int): beat_types.extend([beat_type] * count) else: # For half syllables, round up and use markers whole_part = int(count) frac_part = count - whole_part if whole_part > 0: beat_types.extend([beat_type] * whole_part) if frac_part > 0: beat_types.append(f"{beat_type}½") # Ensure we have enough beat types while len(beat_types) < len(syllable_breakdown): beat_types.append("-") # Trim beat types if too many beat_types = beat_types[:len(syllable_breakdown)] # Generate the visualization with highlighted misalignments result = [] # First line: syllable breakdown with stress indicators syllable_display = [] for i, syllable in enumerate(syllable_breakdown): if i < len(syllable_stresses) and syllable_stresses[i] == "1": syllable_display.append(syllable.upper()) # Uppercase for stressed syllables else: syllable_display.append(syllable.lower()) # Lowercase for unstressed result.append(" - ".join(syllable_display)) # Second line: beat indicators with highlighting for misalignments beat_indicators = [] for i, (syllable, beat_type) in enumerate(zip(syllable_stresses, beat_types)): if beat_type == "S" or beat_type.startswith("S"): if syllable == "1": beat_indicators.append("↑") # Aligned strong beat else: beat_indicators.append("❌") # Misaligned strong beat elif beat_type == "m" or beat_type.startswith("m"): beat_indicators.append("•") # Medium beat elif beat_type == "w" or beat_type.startswith("w"): beat_indicators.append("·") # Weak beat else: beat_indicators.append(" ") result.append(" ".join(beat_indicators)) # Third line: beat types result.append(" - ".join(beat_types)) return "\n".join(result) @functools.lru_cache(maxsize=256) def naive_syllable_split(word, syllable_count): """Naively split a word into the specified number of syllables, with caching for performance.""" if syllable_count <= 1: return [word] # Common syllable break patterns vowels = "aeiouy" consonants = "bcdfghjklmnpqrstvwxz" # Find potential split points splits = [] for i in range(1, len(word) - 1): if word[i] in consonants and word[i-1] in vowels: splits.append(i) elif word[i] in vowels and word[i-1] in consonants and word[i+1] in consonants: splits.append(i+1) # Ensure we have enough split points while len(splits) < syllable_count - 1: for i in range(1, len(word)): if i not in splits: splits.append(i) break # Sort and limit splits.sort() splits = splits[:syllable_count - 1] # Split the word result = [] prev = 0 for pos in splits: result.append(word[prev:pos]) prev = pos result.append(word[prev:]) return result def get_stress_aligned_alternatives(word, position_to_stress): """Suggest alternative words with proper stress at the required position.""" # This would ideally use a more sophisticated dictionary lookup, # but here's a simple implementation with common word patterns syllable_count = count_syllables_for_word(word) # Common synonyms/replacements by syllable count with stress position if syllable_count == 2: if position_to_stress == 0: # Need stress on first syllable first_stress = ["love-ly", "won-der", "beau-ty", "danc-ing", "dream-ing", "heart-beat", "sun-light", "moon-light", "star-light"] return ", ".join(first_stress[:3]) else: # Need stress on second syllable second_stress = ["be-LIEVE", "a-BOVE", "a-ROUND", "to-DAY", "a-LIVE", "a-LONE", "be-HOLD", "re-TURN", "de-LIGHT"] return ", ".join(second_stress[:3]) elif syllable_count == 3: if position_to_stress == 0: # First syllable stress return "MEM-o-ry, WON-der-ful, BEAU-ti-ful" elif position_to_stress == 1: # Second syllable stress return "a-MAZE-ing, to-GE-ther, for-EV-er" else: # Third syllable stress return "un-der-STAND, o-ver-COME, ne-ver-MORE" # For other cases, just provide general guidance return f"a word with stress on syllable {position_to_stress + 1}" def generate_lyrics(genre, duration, emotion_results, song_structure=None): """ Generate lyrics based on the genre, emotion, and structure analysis with enhanced rhythmic alignment. This improved version uses advanced template creation, better formatting, and verification with potential refinement for lyrics that perfectly match the musical rhythm patterns. Parameters: genre: Musical genre of the audio duration: Duration of the audio in seconds emotion_results: Dictionary containing emotional analysis results song_structure: Optional dictionary containing song structure analysis Returns: Generated lyrics aligned with the rhythm patterns of the music """ # Extract emotion and theme data from analysis results primary_emotion = emotion_results["emotion_analysis"]["primary_emotion"] primary_theme = emotion_results["theme_analysis"]["primary_theme"] # Extract numeric values safely with fallbacks try: tempo = float(emotion_results["rhythm_analysis"]["tempo"]) except (KeyError, ValueError, TypeError): tempo = 0.0 key = emotion_results["tonal_analysis"]["key"] mode = emotion_results["tonal_analysis"]["mode"] # Format syllable templates for the prompt syllable_guidance = "" templates_for_verification = [] # Create a structure visualization to help with lyrics-music matching structure_visualization = "=== MUSIC-LYRICS STRUCTURE MATCHING ===\n\n" structure_visualization += f"Song Duration: {duration:.1f} seconds\n" structure_visualization += f"Tempo: {tempo:.1f} BPM\n\n" if song_structure: # Try to use flexible structure if available if "flexible_structure" in song_structure and song_structure["flexible_structure"]: flexible = song_structure["flexible_structure"] if "segments" in flexible and flexible["segments"]: # Get the segments segments = flexible["segments"] # Add structure visualization structure_visualization += f"Total segments: {len(segments)}\n" structure_visualization += "Each segment represents one musical phrase for which you should write ONE line of lyrics.\n\n" # Process each segment to create enhanced rhythmic templates enhanced_templates = [] for i, segment in enumerate(segments): if i < 30: # Extend limit to 30 lines to handle longer songs # Get the beat information for this segment segment_start = segment["start"] segment_end = segment["end"] # Add segment info to visualization structure_visualization += f"Segment {i+1}: {segment_start:.1f}s - {segment_end:.1f}s (duration: {segment_end-segment_start:.1f}s)\n" # Find beats within this segment segment_beats = [] beat_times = flexible["beats"]["beat_times"] beat_strengths = flexible["beats"].get("beat_strengths", []) for j, beat_time in enumerate(beat_times): if segment_start <= beat_time < segment_end: # Add this beat to the segment segment_beats.append(j) # Create segment-specific beat info segment_beats_info = { "beat_times": [beat_times[j] for j in segment_beats], "tempo": flexible["beats"].get("tempo", 120) } if beat_strengths: segment_beats_info["beat_strengths"] = [ beat_strengths[j] for j in segment_beats if j < len(beat_strengths) ] # Create a phrase structure for this segment segment_beats_info["phrases"] = [segment_beats] # Generate enhanced template with genre awareness and auto phrasing enhanced_template = create_flexible_syllable_templates( segment_beats_info, genre=genre, phrase_mode='auto' if i == 0 else 'default' ) enhanced_templates.append(enhanced_template) templates_for_verification.append(enhanced_template) # Add template to visualization structure_visualization += f" Template: {enhanced_template}\n" # Use these templates to determine verse/chorus structure based on similar patterns # This is a simple version - could be enhanced with more sophisticated pattern detection section_types = [] pattern_groups = {} for i, template in enumerate(enhanced_templates): # Create simplified version for pattern matching simple_pattern = template.replace("(", "").replace(")", "").replace(":", "") # Check if this pattern is similar to any we've seen found_match = False for group, patterns in pattern_groups.items(): if any(simple_pattern == p.replace("(", "").replace(")", "").replace(":", "") for p in patterns): pattern_groups[group].append(template) section_types.append(group) found_match = True break if not found_match: # New pattern type group_name = f"Group_{len(pattern_groups) + 1}" pattern_groups[group_name] = [template] section_types.append(group_name) # Map pattern groups to verse/chorus/bridge based on common structures section_mapping = {} if len(pattern_groups) >= 1: # Assume the most common pattern is the verse most_common = max(pattern_groups.items(), key=lambda x: len(x[1]))[0] section_mapping[most_common] = "verse" if len(pattern_groups) >= 2: # Second most common might be chorus sorted_groups = sorted(pattern_groups.items(), key=lambda x: len(x[1]), reverse=True) if len(sorted_groups) > 1: section_mapping[sorted_groups[1][0]] = "chorus" if len(pattern_groups) >= 3: # Third pattern could be bridge sorted_groups = sorted(pattern_groups.items(), key=lambda x: len(x[1]), reverse=True) if len(sorted_groups) > 2: section_mapping[sorted_groups[2][0]] = "bridge" # Update section types using the mapping mapped_section_types = [] for section_type in section_types: if section_type in section_mapping: mapped_section_types.append(section_mapping[section_type]) else: mapped_section_types.append("verse") # Default to verse # Add structure visualization with section types structure_visualization += "\nPredicted Song Structure:\n" for i, section_type in enumerate(mapped_section_types): if i < len(enhanced_templates): structure_visualization += f"Line {i+1}: [{section_type.upper()}] {enhanced_templates[i]}\n" # Calculate total line count total_lines = len(enhanced_templates) verse_lines = mapped_section_types.count("verse") chorus_lines = mapped_section_types.count("chorus") bridge_lines = mapped_section_types.count("bridge") # Add summary structure_visualization += f"\nTotal Lines Required: {total_lines}\n" structure_visualization += f"Verse Lines: {verse_lines}\n" structure_visualization += f"Chorus Lines: {chorus_lines}\n" structure_visualization += f"Bridge Lines: {bridge_lines}\n" # Format templates with improved formatting for the prompt syllable_guidance = "CRITICAL RHYTHM INSTRUCTIONS:\n" syllable_guidance += "Each line of lyrics MUST match exactly with one musical phrase/segment.\n" syllable_guidance += "Follow these rhythm patterns for each line (STRONG beats need stressed syllables):\n\n" # Add section headers to formatted templates formatted_templates = [] for i, template in enumerate(enhanced_templates): if i < len(mapped_section_types): section_type = mapped_section_types[i].upper() if i > 0 and mapped_section_types[i] != mapped_section_types[i-1]: # New section formatted_templates.append(f"\n[{section_type}]") elif i == 0: # First section formatted_templates.append(f"[{section_type}]") formatted_templates.append(format_syllable_templates_for_prompt([template], arrow="→", line_wrap=8)) syllable_guidance += "\n".join(formatted_templates) # Store info for later use in traditional sections approach use_sections = True # Use the detected section structure for traditional approach if verse_lines > 0: verse_lines = min(verse_lines, total_lines // 2) # Ensure reasonable limits else: verse_lines = total_lines // 2 if chorus_lines > 0: chorus_lines = min(chorus_lines, total_lines // 3) else: chorus_lines = total_lines // 3 if bridge_lines > 0: bridge_lines = min(bridge_lines, total_lines // 6) else: bridge_lines = 0 # Fallback to traditional sections if needed elif "syllables" in song_structure and song_structure["syllables"]: syllable_guidance = "RHYTHM PATTERN INSTRUCTIONS:\n" syllable_guidance += "Follow these syllable patterns for each section. Each line should match ONE phrase:\n\n" # Count sections for visualization section_counts = {"verse": 0, "chorus": 0, "bridge": 0, "intro": 0, "outro": 0} for section in song_structure["syllables"]: section_counts[section["type"]] = section_counts.get(section["type"], 0) + 1 if "syllable_template" in section: # Process to create enhanced template section_beats_info = { "beat_times": [beat for beat in song_structure["beats"]["beat_times"] if section["start"] <= beat < section["end"]], "tempo": song_structure["beats"].get("tempo", 120) } if "beat_strengths" in song_structure["beats"]: section_beats_info["beat_strengths"] = [ strength for i, strength in enumerate(song_structure["beats"]["beat_strengths"]) if i < len(song_structure["beats"]["beat_times"]) and section["start"] <= song_structure["beats"]["beat_times"][i] < section["end"] ] # Create a phrase structure for this section section_beats_info["phrases"] = [list(range(len(section_beats_info["beat_times"])))] # Generate enhanced template with genre awareness enhanced_template = create_flexible_syllable_templates( section_beats_info, genre=genre, phrase_mode='auto' if section['type'] == 'verse' else 'default' ) syllable_guidance += f"[{section['type'].capitalize()}]:\n" syllable_guidance += format_syllable_templates_for_prompt( enhanced_template, arrow="→", line_wrap=6 ) + "\n\n" templates_for_verification.append(section) elif "syllable_count" in section: syllable_guidance += f"[{section['type'].capitalize()}]: ~{section['syllable_count']} syllables total\n" # Create structure visualization structure_visualization += "Using traditional section-based structure:\n" for section_type, count in section_counts.items(): if count > 0: structure_visualization += f"{section_type.capitalize()}: {count} sections\n" # Set traditional section counts verse_lines = max(2, section_counts.get("verse", 0) * 4) chorus_lines = max(2, section_counts.get("chorus", 0) * 4) bridge_lines = max(0, section_counts.get("bridge", 0) * 2) # Use sections approach use_sections = True # If we couldn't get specific templates, use general guidance if not syllable_guidance: syllable_guidance = "RHYTHM ALIGNMENT INSTRUCTIONS:\n\n" syllable_guidance += "1. Align stressed syllables with strong beats (usually beats 1 and 3 in 4/4 time)\n" syllable_guidance += "2. Use unstressed syllables on weak beats (usually beats 2 and 4 in 4/4 time)\n" syllable_guidance += "3. Use appropriate syllable counts based on tempo:\n" syllable_guidance += " - Fast tempo (>120 BPM): 4-6 syllables per line\n" syllable_guidance += " - Medium tempo (90-120 BPM): 6-8 syllables per line\n" syllable_guidance += " - Slow tempo (<90 BPM): 8-10 syllables per line\n" # Create basic structure visualization structure_visualization += "Using estimated structure (no detailed analysis available):\n" # Calculate rough section counts based on duration estimated_lines = max(8, int(duration / 10)) structure_visualization += f"Estimated total lines: {estimated_lines}\n" # Set traditional section counts based on duration verse_lines = estimated_lines // 2 chorus_lines = estimated_lines // 3 bridge_lines = estimated_lines // 6 if estimated_lines > 12 else 0 # Use sections approach use_sections = True # Add examples of syllable-beat alignment with enhanced format syllable_guidance += "\nEXAMPLES OF PERFECT RHYTHM ALIGNMENT:\n" syllable_guidance += "Pattern: S(0.95):1 → w(0.4):1 → m(0.7):1 → w(0.3):1\n" syllable_guidance += "Lyric: 'HEAR the MU-sic PLAY'\n" syllable_guidance += " ↑ ↑ ↑ ↑\n" syllable_guidance += " S w m w <- BEAT TYPE\n\n" syllable_guidance += "Pattern: S(0.9):2 → w(0.3):1 → S(0.85):1 → w(0.4):2\n" syllable_guidance += "Lyric: 'DANC-ing TO the RHYTHM of LOVE'\n" syllable_guidance += " ↑ ↑ ↑ ↑ ↑ ↑\n" syllable_guidance += " S S w S w w <- BEAT TYPE\n\n" syllable_guidance += "Pattern: S(0.92):1 → m(0.65):2 → S(0.88):1 → w(0.35):1\n" syllable_guidance += "Lyric: 'TIME keeps FLOW-ing ON and ON'\n" syllable_guidance += " ↑ ↑ ↑ ↑ ↑ ↑\n" syllable_guidance += " S m m S w w <- BEAT TYPE\n\n" # Add genre-specific guidance based on the detected genre genre_guidance = "" if any(term in genre.lower() for term in ["rap", "hip-hop", "hip hop"]): genre_guidance += "\nSPECIFIC GUIDANCE FOR RAP/HIP-HOP RHYTHMS:\n" genre_guidance += "- Use more syllables per beat for rapid-fire sections\n" genre_guidance += "- Create internal rhymes within lines, not just at line endings\n" genre_guidance += "- Emphasize the first beat of each bar with strong consonants\n" elif any(term in genre.lower() for term in ["electronic", "edm", "techno", "house", "dance"]): genre_guidance += "\nSPECIFIC GUIDANCE FOR ELECTRONIC MUSIC RHYTHMS:\n" genre_guidance += "- Use repetitive phrases that build and release tension\n" genre_guidance += "- Match syllables precisely to the beat grid\n" genre_guidance += "- Use short, percussive words on strong beats\n" elif any(term in genre.lower() for term in ["rock", "metal", "punk", "alternative"]): genre_guidance += "\nSPECIFIC GUIDANCE FOR ROCK RHYTHMS:\n" genre_guidance += "- Use powerful, emotive words on downbeats\n" genre_guidance += "- Create contrast between verse and chorus energy levels\n" genre_guidance += "- Emphasize hooks with simple, memorable phrases\n" elif any(term in genre.lower() for term in ["folk", "country", "acoustic", "ballad"]): genre_guidance += "\nSPECIFIC GUIDANCE FOR FOLK/ACOUSTIC RHYTHMS:\n" genre_guidance += "- Focus on storytelling with clear narrative flow\n" genre_guidance += "- Use natural speech patterns that flow conversationally\n" genre_guidance += "- Place important words at the start of phrases\n" # Add genre guidance to the main guidance syllable_guidance += genre_guidance # Store the syllable guidance for later use syllable_guidance_text = syllable_guidance # Determine if we should use traditional sections or not based on structure if song_structure and "flexible_structure" in song_structure and song_structure["flexible_structure"]: # If we have more than 4 segments, it's likely not a traditional song structure if "segments" in song_structure["flexible_structure"]: segments = song_structure["flexible_structure"]["segments"] if len(segments) > 4: use_sections = False # Create enhanced prompt with better rhythm alignment instructions if use_sections: # Traditional approach with sections content = f""" You are a talented songwriter who specializes in {genre} music. Write original {genre} song lyrics for a song that is {duration:.1f} seconds long. Music analysis has detected the following qualities in the music: - Tempo: {tempo:.1f} BPM - Key: {key} {mode} - Primary emotion: {primary_emotion} - Primary theme: {primary_theme} {syllable_guidance} CRITICAL PRINCIPLES FOR RHYTHMIC ALIGNMENT: 1. STRESSED syllables MUST fall on STRONG beats (marked with STRONG in the pattern) 2. Natural word stress patterns must match the beat strength (strong words on strong beats) 3. Line breaks should occur at phrase endings for natural breathing 4. Consonant clusters should be avoided on fast notes and strong beats 5. Open vowels (a, e, o) work better for sustained notes and syllables 6. Pay attention to strength values in the pattern (higher values like 0.95 need stronger emphasis) 7. For half-syllable positions (like S1.5 or m2.5), use short, quick syllables or words with weak vowels Think step by step about how to match words to the rhythm pattern: 1. First, identify the strong beats in each line pattern 2. Choose words where stressed syllables naturally fall on strong beats 3. Count syllables carefully to ensure they match the pattern precisely 4. Test your line against the pattern by mapping each syllable IMPORTANT: Each line of lyrics must match exactly to ONE musical phrase/segment. The lyrics should: - Perfectly capture the essence and style of {genre} music - Express the {primary_emotion} emotion and {primary_theme} theme - Follow the structure patterns provided above - Be completely original - Match the song duration of {duration:.1f} seconds IMPORTANT: Your generated lyrics must be followed by a section titled "[RHYTHM_ANALYSIS_SECTION]" where you analyze how well the lyrics align with the musical rhythm. This section MUST appear even if there are no rhythm issues. Include the following in your analysis: 1. Syllable counts for each line and how they match the rhythm pattern 2. Where stressed syllables align with strong beats 3. Any potential misalignments or improvements Your lyrics: """ else: # Flexible approach without traditional sections content = f""" You are a talented songwriter who specializes in {genre} music. Write original lyrics that match the rhythm of a {genre} music segment that is {duration:.1f} seconds long. Music analysis has detected the following qualities: - Tempo: {tempo:.1f} BPM - Key: {key} {mode} - Primary emotion: {primary_emotion} - Primary theme: {primary_theme} {syllable_guidance} CRITICAL PRINCIPLES FOR RHYTHMIC ALIGNMENT: 1. STRESSED syllables MUST fall on STRONG beats (marked with STRONG in the pattern) 2. Natural word stress patterns must match the beat strength (strong words on strong beats) 3. Line breaks should occur at phrase endings for natural breathing 4. Consonant clusters should be avoided on fast notes and strong beats 5. Open vowels (a, e, o) work better for sustained notes and syllables 6. Pay attention to strength values in the pattern (higher values like 0.95 need stronger emphasis) 7. For half-syllable positions (like S1.5 or m2.5), use short, quick syllables or words with weak vowels Think step by step about how to match words to the rhythm pattern: 1. First, identify the strong beats in each line pattern 2. Choose words where stressed syllables naturally fall on strong beats 3. Count syllables carefully to ensure they match the pattern precisely 4. Test your line against the pattern by mapping each syllable CRITICAL: Each line of lyrics must match exactly to ONE musical phrase/segment. For perfect alignment examples: - "FEEL the RHY-thm in your SOUL" – stressed syllables on strong beats - "to-DAY we DANCE a-LONG" – natural speech stress matches musical stress - "WAIT-ing FOR the SUN to RISE" – syllable emphasis aligns with beat emphasis The lyrics should: - Perfectly capture the essence and style of {genre} music - Express the {primary_emotion} emotion and {primary_theme} theme - Be completely original - Maintain a consistent theme throughout - Match the audio segment duration of {duration:.1f} seconds Include any section labels like [Verse] or [Chorus] as indicated in the rhythm patterns above. Each line of lyrics must follow the corresponding segment's rhythm pattern EXACTLY. IMPORTANT: Your generated lyrics must be followed by a section titled "[RHYTHM_ANALYSIS_SECTION]" where you analyze how well the lyrics align with the musical rhythm. This section MUST appear even if there are no rhythm issues. Include the following in your analysis: 1. Syllable counts for each line and how they match the rhythm pattern 2. Where stressed syllables align with strong beats 3. Any potential misalignments or improvements Your lyrics: """ # Format as a chat message for the LLM messages = [ {"role": "user", "content": content} ] # Apply standard chat template without thinking enabled text = llm_tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) # Generate lyrics using the LLM model_inputs = llm_tokenizer([text], return_tensors="pt").to(llm_model.device) # Configure generation parameters based on model capability generation_params = { "do_sample": True, "temperature": 0.6, # Lower for more consistent rhythm alignment "top_p": 0.95, "top_k": 50, # Increased from 20 for more diversity "repetition_penalty": 1.2, "max_new_tokens": 2048 # Doubled from 1024 for more comprehensive lyrics } # Generate output generated_ids = llm_model.generate( **model_inputs, **generation_params ) # Extract output tokens output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() # Skip the thinking process completely and just get the raw output lyrics = llm_tokenizer.decode(output_ids, skip_special_tokens=True).strip() # If we find tags, extract only the content after if "" in lyrics and "" in lyrics: lyrics = lyrics.split("")[1].strip() # Remove any other thinking indicators that might be present thinking_markers = ["", "", "[thinking]", "[/thinking]", "I'll think step by step:"] for marker in thinking_markers: if marker in lyrics: parts = lyrics.split(marker) if len(parts) > 1: lyrics = parts[-1].strip() # Take the last part after any thinking marker # Verify syllable counts with enhanced verification if templates_for_verification: verified_lyrics = verify_flexible_syllable_counts(lyrics, templates_for_verification) # Check if significant issues were detected if "[Note: Potential rhythm mismatches" in verified_lyrics and "Detailed Alignment Analysis" in verified_lyrics: # Extract the original lyrics (before the notes section) original_lyrics = lyrics.split("[Note:")[0].strip() # Extract the analysis analysis = verified_lyrics.split("[Note:")[1] # If we have serious alignment issues, consider a refinement step if "stress misalignments" in analysis and len(templates_for_verification) > 0: # Add a refinement prompt with the specific analysis refinement_prompt = f""" You need to fix rhythm issues in these lyrics. Here's the analysis of the problems: {analysis} Revise the lyrics to perfectly match the rhythm pattern while maintaining the theme. Focus on fixing the stress misalignments by placing stressed syllables on STRONG beats. Original lyrics: {original_lyrics} Improved lyrics with fixed rhythm: """ # Format as a chat message for refinement refinement_messages = [ {"role": "user", "content": refinement_prompt} ] # Use standard template for refinement (no thinking mode needed) refinement_text = llm_tokenizer.apply_chat_template( refinement_messages, tokenize=False, add_generation_prompt=True ) try: # Generate refined lyrics with more focus on rhythm alignment refinement_inputs = llm_tokenizer([refinement_text], return_tensors="pt").to(llm_model.device) # Use stricter parameters for refinement refinement_params = { "do_sample": True, "temperature": 0.4, # Lower temperature for more precise refinement "top_p": 0.9, "repetition_penalty": 1.3, "max_new_tokens": 1024 } refined_ids = llm_model.generate( **refinement_inputs, **refinement_params ) # Extract refined lyrics refined_output_ids = refined_ids[0][len(refinement_inputs.input_ids[0]):].tolist() refined_lyrics = llm_tokenizer.decode(refined_output_ids, skip_special_tokens=True).strip() # Verify the refined lyrics refined_verified_lyrics = verify_flexible_syllable_counts(refined_lyrics, templates_for_verification) # Only use refined lyrics if they're better (fewer notes) if "[Note: Potential rhythm mismatches" not in refined_verified_lyrics: lyrics = refined_lyrics elif refined_verified_lyrics.count("misalignments") < verified_lyrics.count("misalignments"): lyrics = refined_verified_lyrics else: lyrics = verified_lyrics except Exception as e: print(f"Error in lyrics refinement: {str(e)}") lyrics = verified_lyrics else: # Minor issues, just use the verification notes lyrics = verified_lyrics else: # No significant issues detected lyrics = verified_lyrics # Check if we have the [RHYTHM_ANALYSIS_SECTION] tag if "[RHYTHM_ANALYSIS_SECTION]" in lyrics: # Split at our custom marker parts = lyrics.split("[RHYTHM_ANALYSIS_SECTION]") clean_lyrics = parts[0].strip() rhythm_analysis = parts[1].strip() # Add our standard marker for compatibility with existing code lyrics = clean_lyrics + "\n\n[Note: Rhythm Analysis]\n" + rhythm_analysis # For backwards compatibility - if we have the old format, still handle it elif "[Note: Potential rhythm mismatches" in lyrics: # Keep it as is, the existing parsing code can handle this format pass else: # No analysis found, add a minimal one lyrics = lyrics + "\n\n[Note: Rhythm Analysis]\nNo rhythm issues detected. All syllables align well with the beat pattern." # Before returning, add syllable analysis and prompt template if isinstance(lyrics, str): # Extract clean lyrics and analysis if "[Note: Rhythm Analysis]" in lyrics: clean_lyrics = lyrics.split("[Note: Rhythm Analysis]")[0].strip() rhythm_analysis = lyrics.split("[Note: Rhythm Analysis]")[1] elif "[Note: Potential rhythm mismatches" in lyrics: clean_lyrics = lyrics.split("[Note:")[0].strip() rhythm_analysis = "[Note:" + lyrics.split("[Note:")[1] else: clean_lyrics = lyrics rhythm_analysis = "No rhythm analysis available" # Create syllable analysis syllable_analysis = "=== SYLLABLE ANALYSIS ===\n\n" if templates_for_verification: syllable_analysis += "Template Analysis:\n" for i, template in enumerate(templates_for_verification): if i < min(len(templates_for_verification), 30): # Limit to 30 to avoid overwhelming output syllable_analysis += f"Line {i+1}:\n" if isinstance(template, dict): if "syllable_template" in template: syllable_analysis += f" Template: {template['syllable_template']}\n" if "syllable_count" in template: syllable_analysis += f" Expected syllables: {template['syllable_count']}\n" elif isinstance(template, str): syllable_analysis += f" Template: {template}\n" syllable_analysis += "\n" if len(templates_for_verification) > 30: syllable_analysis += f"... and {len(templates_for_verification) - 30} more lines\n\n" # Add structure visualization to syllable analysis syllable_analysis += "\n" + structure_visualization # Create prompt template prompt_template = "=== PROMPT TEMPLATE ===\n\n" prompt_template += "Genre: " + genre + "\n" prompt_template += f"Duration: {duration:.1f} seconds\n" prompt_template += f"Tempo: {tempo:.1f} BPM\n" prompt_template += f"Key: {key} {mode}\n" prompt_template += f"Primary Emotion: {primary_emotion}\n" prompt_template += f"Primary Theme: {primary_theme}\n\n" prompt_template += "Syllable Guidance:\n" + syllable_guidance_text # Return all components return { "lyrics": clean_lyrics, "rhythm_analysis": rhythm_analysis, "syllable_analysis": syllable_analysis, "prompt_template": prompt_template } return lyrics def process_audio(audio_file): """Main function to process audio file, classify genre, and generate lyrics with enhanced rhythm analysis.""" if audio_file is None: return "Please upload an audio file.", None, None try: print("Step 1/5: Extracting audio features...") # Extract audio features audio_data = extract_audio_features(audio_file) print("Step 2/5: Verifying audio contains music...") # First check if it's music try: is_music, ast_results = detect_music(audio_data) except Exception as e: print(f"Error in music detection: {str(e)}") return f"Error in music detection: {str(e)}", None, ast_results if not is_music: return "The uploaded audio does not appear to be music. Please upload a music file.", None, ast_results print("Step 3/5: Classifying music genre...") # Classify genre try: top_genres = classify_genre(audio_data) # Format genre results using utility function genre_results = format_genre_results(top_genres) except Exception as e: print(f"Error in genre classification: {str(e)}") return f"Error in genre classification: {str(e)}", None, ast_results print("Step 4/5: Analyzing music emotions, themes, and structure...") # Analyze music emotions and themes try: emotion_results = music_analyzer.analyze_music(audio_file) except Exception as e: print(f"Error in emotion analysis: {str(e)}") # Continue even if emotion analysis fails emotion_results = { "emotion_analysis": {"primary_emotion": "Unknown"}, "theme_analysis": {"primary_theme": "Unknown"}, "rhythm_analysis": {"tempo": 0}, "tonal_analysis": {"key": "Unknown", "mode": ""}, "summary": {"tempo": 0, "key": "Unknown", "mode": "", "primary_emotion": "Unknown", "primary_theme": "Unknown"} } # Calculate detailed song structure for better lyrics alignment try: # Enhanced song structure calculation for precise lyrics matching y, sr = load_audio(audio_file, SAMPLE_RATE) # Analyze beats and phrases for music-aligned lyrics beats_info = detect_beats(y, sr) sections_info = detect_sections(y, sr) # Create structured segments for precise line-by-line matching segments = [] # Try to break audio into meaningful segments based on sections # Each segment will correspond to one line of lyrics if sections_info and len(sections_info) > 1: min_segment_duration = 1.5 # Minimum 1.5 seconds per segment for section in sections_info: section_start = section["start"] section_end = section["end"] section_duration = section["duration"] # For very short sections, add as a single segment if section_duration < min_segment_duration * 1.5: segments.append({ "start": section_start, "end": section_end }) else: # Calculate ideal number of segments for this section # based on its duration - aiming for 2-4 second segments ideal_segment_duration = 3.0 # Target 3 seconds per segment segment_count = max(1, int(section_duration / ideal_segment_duration)) # Create evenly-spaced segments within this section segment_duration = section_duration / segment_count for i in range(segment_count): segment_start = section_start + i * segment_duration segment_end = segment_start + segment_duration segments.append({ "start": segment_start, "end": segment_end }) # If no good sections found, create segments based on beats elif beats_info and len(beats_info["beat_times"]) > 4: beats = beats_info["beat_times"] time_signature = beats_info.get("time_signature", 4) # Target one segment per musical measure (typically 4 beats) measure_size = time_signature for i in range(0, len(beats), measure_size): if i + 1 < len(beats): # Need at least 2 beats for a meaningful segment measure_start = beats[i] # If we have enough beats for the full measure if i + measure_size < len(beats): measure_end = beats[i + measure_size] else: # Use available beats and extrapolate for the last measure if i > 0: beat_interval = beats[i] - beats[i-1] measure_end = beats[-1] + (beat_interval * (measure_size - (len(beats) - i))) else: measure_end = audio_data["duration"] segments.append({ "start": measure_start, "end": measure_end }) # Last resort: simple time-based segments else: # Create segments of approximately 3 seconds each segment_duration = 3.0 total_segments = max(4, int(audio_data["duration"] / segment_duration)) segment_duration = audio_data["duration"] / total_segments for i in range(total_segments): segment_start = i * segment_duration segment_end = segment_start + segment_duration segments.append({ "start": segment_start, "end": segment_end }) # Create a flexible structure with the segments flexible_structure = { "beats": beats_info, "segments": segments } # Add to song structure song_structure = { "beats": beats_info, "sections": sections_info, "flexible_structure": flexible_structure } # Add syllable counts to each section song_structure["syllables"] = [] for section in sections_info: # Create syllable templates for sections section_beats_info = { "beat_times": [beat for beat in beats_info["beat_times"] if section["start"] <= beat < section["end"]], "tempo": beats_info.get("tempo", 120) } if "beat_strengths" in beats_info: section_beats_info["beat_strengths"] = [ strength for i, strength in enumerate(beats_info["beat_strengths"]) if i < len(beats_info["beat_times"]) and section["start"] <= beats_info["beat_times"][i] < section["end"] ] # Get a syllable count based on section duration and tempo syllable_count = int(section["duration"] * (beats_info.get("tempo", 120) / 60) * 1.5) section_info = { "type": section["type"], "start": section["start"], "end": section["end"], "duration": section["duration"], "syllable_count": syllable_count, "beat_count": len(section_beats_info["beat_times"]) } # Try to create a more detailed syllable template if len(section_beats_info["beat_times"]) >= 2: section_info["syllable_template"] = create_flexible_syllable_templates( section_beats_info, genre=top_genres[0][0] ) song_structure["syllables"].append(section_info) print(f"Successfully analyzed song structure with {len(segments)} segments") except Exception as e: print(f"Error analyzing song structure: {str(e)}") # Continue with a simpler approach if this fails song_structure = None print("Step 5/5: Generating rhythmically aligned lyrics...") # Generate lyrics based on top genre, emotion analysis, and song structure try: primary_genre, _ = top_genres[0] lyrics_result = generate_lyrics(primary_genre, audio_data["duration"], emotion_results, song_structure) # Handle both old and new return formats if isinstance(lyrics_result, dict): lyrics = lyrics_result["lyrics"] rhythm_analysis = lyrics_result["rhythm_analysis"] syllable_analysis = lyrics_result["syllable_analysis"] prompt_template = lyrics_result["prompt_template"] else: lyrics = lyrics_result rhythm_analysis = "No detailed rhythm analysis available" syllable_analysis = "No syllable analysis available" prompt_template = "No prompt template available" except Exception as e: print(f"Error generating lyrics: {str(e)}") lyrics = f"Error generating lyrics: {str(e)}" rhythm_analysis = "No rhythm analysis available" syllable_analysis = "No syllable analysis available" prompt_template = "No prompt template available" # Prepare results dictionary with additional rhythm analysis results = { "genre_results": genre_results, "lyrics": lyrics, "rhythm_analysis": rhythm_analysis, "syllable_analysis": syllable_analysis, "prompt_template": prompt_template, "ast_results": ast_results } return results except Exception as e: error_msg = f"Error processing audio: {str(e)}" print(error_msg) return error_msg, None, [] # Create enhanced Gradio interface with tabs for better organization with gr.Blocks(title="Music Genre Classifier & Lyrics Generator") as demo: gr.Markdown("# Music Genre Classifier & Lyrics Generator") gr.Markdown("Upload a music file to classify its genre, analyze its emotions, and generate perfectly aligned lyrics.") with gr.Row(): with gr.Column(scale=1): audio_input = gr.Audio(label="Upload Music", type="filepath") submit_btn = gr.Button("Analyze & Generate", variant="primary") # Add genre info box with gr.Accordion("About Music Genres", open=False): gr.Markdown(""" The system recognizes various music genres including: - Pop, Rock, Hip-Hop, R&B - Electronic, Dance, Techno, House - Jazz, Blues, Classical - Folk, Country, Acoustic - Metal, Punk, Alternative - And many others! For best results, use high-quality audio files (MP3, WAV, FLAC) with at least 10 seconds of music. """) with gr.Column(scale=2): # Use tabs for better organization of outputs with gr.Tabs(): with gr.TabItem("Analysis Results"): genre_output = gr.Textbox(label="Detected Genres", lines=4) # Create 2 columns for emotion and audio classification with gr.Row(): with gr.Column(): emotion_output = gr.Textbox(label="Emotion & Structure Analysis", lines=8) with gr.Column(): ast_output = gr.Textbox(label="Audio Classification", lines=8) with gr.TabItem("Generated Lyrics"): lyrics_output = gr.Textbox(label="Lyrics", lines=18) with gr.TabItem("Rhythm Analysis"): rhythm_analysis_output = gr.Textbox(label="Syllable-Beat Alignment Analysis", lines=16) with gr.TabItem("Syllable Analysis"): syllable_analysis_output = gr.Textbox(label="Detailed Syllable Analysis", lines=16) prompt_template_output = gr.Textbox(label="Prompt Template", lines=16) # Processing function with better handling of results def display_results(audio_file): if audio_file is None: return "Please upload an audio file.", "No emotion analysis available.", "No audio classification available.", "No lyrics generated.", "No rhythm analysis available.", "No syllable analysis available.", "No prompt template available." try: # Process audio and get results results = process_audio(audio_file) # Check if we got an error message instead of results if isinstance(results, str) and "Error" in results: return results, "Error in analysis", "Error in classification", "No lyrics generated", "No rhythm analysis available", "No syllable analysis available", "No prompt template available" elif isinstance(results, tuple) and isinstance(results[0], str) and "Error" in results[0]: return results[0], "Error in analysis", "Error in classification", "No lyrics generated", "No rhythm analysis available", "No syllable analysis available", "No prompt template available" # For backwards compatibility, handle both dictionary and tuple returns if isinstance(results, dict): genre_results = results.get("genre_results", "Genre classification failed") lyrics = results.get("lyrics", "Lyrics generation failed") ast_results = results.get("ast_results", []) # Use clean lyrics if available clean_lyrics = results.get("clean_lyrics", lyrics) rhythm_analysis = results.get("rhythm_analysis", "No detailed rhythm analysis available") # Extract syllable analysis and prompt template syllable_analysis = results.get("syllable_analysis", "No syllable analysis available") prompt_template = results.get("prompt_template", "No prompt template available") else: # Handle the old tuple return format genre_results, lyrics, ast_results = results clean_lyrics = lyrics # Extract rhythm analysis if present rhythm_analysis = "No detailed rhythm analysis available" if isinstance(lyrics, str): # First check for new format if "[Note: Rhythm Analysis]" in lyrics: clean_lyrics = lyrics.split("[Note: Rhythm Analysis]")[0].strip() rhythm_analysis = lyrics.split("[Note: Rhythm Analysis]")[1] # Check for old format elif "[Note: Potential rhythm mismatches" in lyrics: clean_lyrics = lyrics.split("[Note:")[0].strip() rhythm_analysis = "[Note:" + lyrics.split("[Note:")[1] # Default values for new fields syllable_analysis = "No syllable analysis available" prompt_template = "No prompt template available" # Format emotion analysis results try: emotion_results = music_analyzer.analyze_music(audio_file) emotion_text = f"Tempo: {emotion_results['summary']['tempo']:.1f} BPM\n" emotion_text += f"Key: {emotion_results['summary']['key']} {emotion_results['summary']['mode']}\n" emotion_text += f"Primary Emotion: {emotion_results['summary']['primary_emotion']}\n" emotion_text += f"Primary Theme: {emotion_results['summary']['primary_theme']}" # Add detailed song structure information if available try: audio_data = extract_audio_features(audio_file) song_structure = calculate_detailed_song_structure(audio_data) emotion_text += "\n\nSong Structure:\n" for section in song_structure["syllables"]: emotion_text += f"- {section['type'].capitalize()}: {section['start']:.1f}s to {section['end']:.1f}s " emotion_text += f"({section['duration']:.1f}s, {section['beat_count']} beats, " if "syllable_template" in section: emotion_text += f"template: {section['syllable_template']})\n" else: emotion_text += f"~{section['syllable_count']} syllables)\n" # Add flexible structure info if available if "flexible_structure" in song_structure and song_structure["flexible_structure"]: flexible = song_structure["flexible_structure"] if "segments" in flexible and flexible["segments"]: emotion_text += "\nDetailed Rhythm Analysis:\n" for i, segment in enumerate(flexible["segments"][:5]): # Show first 5 segments emotion_text += f"- Segment {i+1}: {segment['start']:.1f}s to {segment['end']:.1f}s, " emotion_text += f"pattern: {segment.get('syllable_template', 'N/A')}\n" if len(flexible["segments"]) > 5: emotion_text += f" (+ {len(flexible['segments']) - 5} more segments)\n" except Exception as e: print(f"Error displaying song structure: {str(e)}") # Continue without showing structure details except Exception as e: print(f"Error in emotion analysis: {str(e)}") emotion_text = f"Error in emotion analysis: {str(e)}" # Format AST classification results if ast_results and isinstance(ast_results, list): ast_text = "Audio Classification Results:\n" for result in ast_results[:5]: # Show top 5 results ast_text += f"{result['label']}: {result['score']*100:.2f}%\n" else: ast_text = "No valid audio classification results available." # Return all results including new fields return genre_results, emotion_text, ast_text, clean_lyrics, rhythm_analysis, syllable_analysis, prompt_template except Exception as e: error_msg = f"Error: {str(e)}" print(error_msg) return error_msg, "Error in emotion analysis", "Error in audio classification", "No lyrics generated", "No rhythm analysis available", "No syllable analysis available", "No prompt template available" # Connect the button to the display function with updated outputs submit_btn.click( fn=display_results, inputs=[audio_input], outputs=[genre_output, emotion_output, ast_output, lyrics_output, rhythm_analysis_output, syllable_analysis_output, prompt_template_output] ) # Enhanced explanation of how the system works with gr.Accordion("How it works", open=False): gr.Markdown(""" ## Advanced Lyrics Generation Process 1. **Audio Analysis**: The system analyzes your uploaded music file using multiple machine learning models. 2. **Genre Classification**: A specialized neural network identifies the musical genre, detecting subtle patterns in the audio. 3. **Emotional Analysis**: The system examines harmonic, rhythmic, and timbral features to determine the emotional qualities of the music. 4. **Rhythm Mapping**: Advanced beat detection algorithms create a detailed rhythmic map of the music, identifying: - Strong and weak beats - Natural phrase boundaries - Time signature and tempo variations 5. **Syllable Template Creation**: For each musical phrase, the system generates precise syllable templates that reflect: - Beat stress patterns (strong, medium, weak) - Appropriate syllable counts based on tempo - Genre-specific rhythmic qualities 6. **Lyrics Generation**: Using the detected genre, emotion, and rhythm patterns, a large language model generates lyrics that: - Match the emotional quality of the music - Follow the precise syllable templates - Align stressed syllables with strong beats - Maintain genre-appropriate style and themes 7. **Rhythm Verification**: The system verifies the generated lyrics, analyzing: - Syllable count accuracy - Stress alignment with strong beats - Word stress patterns 8. **Refinement**: If significant rhythm mismatches are detected, the system can automatically refine the lyrics for better alignment. This multi-step process creates lyrics that feel naturally connected to the music, as if they were written specifically for it. """) # Launch the app demo.launch()