root
syllables trying third
31a885a
raw
history blame
110 kB
import os
import io
import gradio as gr
import torch
import numpy as np
import re
import pronouncing # Add this to requirements.txt for syllable counting
from transformers import (
AutoModelForAudioClassification,
AutoFeatureExtractor,
AutoTokenizer,
pipeline,
AutoModelForCausalLM,
BitsAndBytesConfig
)
from huggingface_hub import login
from utils import (
load_audio,
extract_audio_duration,
extract_mfcc_features,
calculate_lyrics_length,
format_genre_results,
ensure_cuda_availability,
preprocess_audio_for_model
)
from emotionanalysis import MusicAnalyzer
import librosa
# Login to Hugging Face Hub if token is provided
if "HF_TOKEN" in os.environ:
login(token=os.environ["HF_TOKEN"])
# Constants
GENRE_MODEL_NAME = "dima806/music_genres_classification"
MUSIC_DETECTION_MODEL = "MIT/ast-finetuned-audioset-10-10-0.4593"
LLM_MODEL_NAME = "Qwen/Qwen3-14B"
SAMPLE_RATE = 22050 # Standard sample rate for audio processing
# Check CUDA availability (for informational purposes)
CUDA_AVAILABLE = ensure_cuda_availability()
# Create music detection pipeline
print(f"Loading music detection model: {MUSIC_DETECTION_MODEL}")
try:
music_detector = pipeline(
"audio-classification",
model=MUSIC_DETECTION_MODEL,
device=0 if CUDA_AVAILABLE else -1
)
print("Successfully loaded music detection pipeline")
except Exception as e:
print(f"Error creating music detection pipeline: {str(e)}")
# Fallback to manual loading
try:
music_processor = AutoFeatureExtractor.from_pretrained(MUSIC_DETECTION_MODEL)
music_model = AutoModelForAudioClassification.from_pretrained(MUSIC_DETECTION_MODEL)
print("Successfully loaded music detection model and feature extractor")
except Exception as e2:
print(f"Error loading music detection model components: {str(e2)}")
raise RuntimeError(f"Could not load music detection model: {str(e2)}")
# Create genre classification pipeline
print(f"Loading audio classification model: {GENRE_MODEL_NAME}")
try:
genre_classifier = pipeline(
"audio-classification",
model=GENRE_MODEL_NAME,
device=0 if CUDA_AVAILABLE else -1
)
print("Successfully loaded audio classification pipeline")
except Exception as e:
print(f"Error creating pipeline: {str(e)}")
# Fallback to manual loading
try:
genre_processor = AutoFeatureExtractor.from_pretrained(GENRE_MODEL_NAME)
genre_model = AutoModelForAudioClassification.from_pretrained(GENRE_MODEL_NAME)
print("Successfully loaded audio classification model and feature extractor")
except Exception as e2:
print(f"Error loading model components: {str(e2)}")
raise RuntimeError(f"Could not load genre classification model: {str(e2)}")
# Load LLM with appropriate quantization for T4 GPU
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
)
llm_tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL_NAME)
llm_model = AutoModelForCausalLM.from_pretrained(
LLM_MODEL_NAME,
device_map="auto",
quantization_config=bnb_config,
torch_dtype=torch.float16,
)
# Create LLM pipeline
llm_pipeline = pipeline(
"text-generation",
model=llm_model,
tokenizer=llm_tokenizer,
max_new_tokens=512,
)
# Initialize music emotion analyzer
music_analyzer = MusicAnalyzer()
# New function: Count syllables in text
def count_syllables(text):
"""Count syllables in a given text using the pronouncing library."""
words = re.findall(r'\b[a-zA-Z]+\b', text.lower())
syllable_count = 0
for word in words:
# Get pronunciations for the word
pronunciations = pronouncing.phones_for_word(word)
if pronunciations:
# Count syllables in the first pronunciation
syllable_count += pronouncing.syllable_count(pronunciations[0])
else:
# Fallback: estimate syllables based on vowel groups
vowels = "aeiouy"
count = 0
prev_is_vowel = False
for char in word:
is_vowel = char.lower() in vowels
if is_vowel and not prev_is_vowel:
count += 1
prev_is_vowel = is_vowel
if word.endswith('e'):
count -= 1
if word.endswith('le') and len(word) > 2 and word[-3] not in vowels:
count += 1
if count == 0:
count = 1
syllable_count += count
return syllable_count
def extract_audio_features(audio_file):
"""Extract audio features from an audio file."""
try:
# Load the audio file using utility function
y, sr = load_audio(audio_file, SAMPLE_RATE)
if y is None or sr is None:
raise ValueError("Failed to load audio data")
# Get audio duration in seconds
duration = extract_audio_duration(y, sr)
# Extract MFCCs for genre classification (may not be needed with the pipeline)
mfccs_mean = extract_mfcc_features(y, sr, n_mfcc=20)
return {
"features": mfccs_mean,
"duration": duration,
"waveform": y,
"sample_rate": sr,
"path": audio_file # Keep path for the pipeline
}
except Exception as e:
print(f"Error extracting audio features: {str(e)}")
raise ValueError(f"Failed to extract audio features: {str(e)}")
def classify_genre(audio_data):
"""Classify the genre of the audio using the loaded model."""
try:
# First attempt: Try using the pipeline if available
if 'genre_classifier' in globals():
results = genre_classifier(audio_data["path"])
# Transform pipeline results to our expected format
top_genres = [(result["label"], result["score"]) for result in results[:3]]
return top_genres
# Second attempt: Use manually loaded model components
elif 'genre_processor' in globals() and 'genre_model' in globals():
# Process audio input with feature extractor
inputs = genre_processor(
audio_data["waveform"],
sampling_rate=audio_data["sample_rate"],
return_tensors="pt"
)
with torch.no_grad():
outputs = genre_model(**inputs)
predictions = outputs.logits.softmax(dim=-1)
# Get the top 3 genres
values, indices = torch.topk(predictions, 3)
# Map indices to genre labels
genre_labels = genre_model.config.id2label
top_genres = []
for i, (value, index) in enumerate(zip(values[0], indices[0])):
genre = genre_labels[index.item()]
confidence = value.item()
top_genres.append((genre, confidence))
return top_genres
else:
raise ValueError("No genre classification model available")
except Exception as e:
print(f"Error in genre classification: {str(e)}")
# Fallback: return a default genre if everything fails
return [("rock", 1.0)]
def detect_music(audio_data):
"""Detect if the audio is music using the MIT AST model."""
try:
# First attempt: Try using the pipeline if available
if 'music_detector' in globals():
results = music_detector(audio_data["path"])
# Look for music-related classes in the results
music_confidence = 0.0
for result in results:
label = result["label"].lower()
if any(music_term in label for music_term in ["music", "song", "singing", "instrument"]):
music_confidence = max(music_confidence, result["score"])
return music_confidence >= 0.2, results
# Second attempt: Use manually loaded model components
elif 'music_processor' in globals() and 'music_model' in globals():
# Process audio input with feature extractor
inputs = music_processor(
audio_data["waveform"],
sampling_rate=audio_data["sample_rate"],
return_tensors="pt"
)
with torch.no_grad():
outputs = music_model(**inputs)
predictions = outputs.logits.softmax(dim=-1)
# Get the top predictions
values, indices = torch.topk(predictions, 5)
# Map indices to labels
labels = music_model.config.id2label
# Check for music-related classes
music_confidence = 0.0
results = []
for i, (value, index) in enumerate(zip(values[0], indices[0])):
label = labels[index.item()].lower()
score = value.item()
results.append({"label": label, "score": score})
if any(music_term in label for music_term in ["music", "song", "singing", "instrument"]):
music_confidence = max(music_confidence, score)
return music_confidence >= 0.2, results
else:
raise ValueError("No music detection model available")
except Exception as e:
print(f"Error in music detection: {str(e)}")
return False, []
def detect_beats(y, sr):
"""Enhanced beat detection with adaptive threshold analysis and improved time signature detection."""
# STEP 1: Improved pre-processing with robustness for quiet sections
# Apply a small floor to avoid division-by-zero issues
y = np.clip(y, 1e-10, None) # Prevent extreme quiet sections from causing NaN
# Separate harmonic and percussive components
y_harmonic, y_percussive = librosa.effects.hpss(y)
# Generate multiple onset envelopes with smoothing for stability
onset_env_full = librosa.onset.onset_strength(y=y, sr=sr)
onset_env_perc = librosa.onset.onset_strength(y=y_percussive, sr=sr)
# Apply small smoothing to handle quiet sections
onset_env_full = np.maximum(onset_env_full, 1e-6) # Minimum threshold to avoid NaN
onset_env_perc = np.maximum(onset_env_perc, 1e-6)
# Create weighted combination
combined_onset = onset_env_full * 0.3 + onset_env_perc * 0.7
# STEP 2: Multi-strategy tempo and beat detection
tempo_candidates = []
beat_candidates = []
# Strategy 1: Standard detection
tempo1, beats1 = librosa.beat.beat_track(
onset_envelope=combined_onset,
sr=sr,
tightness=100 # More sensitive tracking
)
tempo_candidates.append(tempo1)
beat_candidates.append(beats1)
# Strategy 2: Try with different tempo range for complex signatures
tempo2, beats2 = librosa.beat.beat_track(
onset_envelope=combined_onset,
sr=sr,
tightness=100,
start_bpm=60, # Lower starting BPM helps find different time signatures
std_bpm=20 # Allow wider variations
)
tempo_candidates.append(tempo2)
beat_candidates.append(beats2)
# Select the best strategy based on consistency
beat_consistency = []
for beats in beat_candidates:
if len(beats) <= 1:
beat_consistency.append(0)
continue
times = librosa.frames_to_time(beats, sr=sr)
intervals = np.diff(times)
# More consistent beats have lower variance in intervals
if np.mean(intervals) > 0:
consistency = 1.0 / (1.0 + np.std(intervals)/np.mean(intervals))
beat_consistency.append(consistency)
else:
beat_consistency.append(0)
best_idx = np.argmax(beat_consistency) if beat_consistency else 0
tempo = tempo_candidates[best_idx]
beat_frames = beat_candidates[best_idx]
# STEP 3: Performance optimization with vectorized operations
beat_times = librosa.frames_to_time(beat_frames, sr=sr)
# Vectorized extraction of beat strengths instead of loop
beat_strengths = []
if len(beat_frames) > 0:
# Filter out beat frames that exceed the onset envelope length
valid_frames = [frame for frame in beat_frames if frame < len(combined_onset)]
if valid_frames:
# Vectorized extraction of valid beat strengths
beat_strengths = combined_onset[valid_frames].tolist()
# Handle any remaining beats
avg_strength = np.mean(beat_strengths) if beat_strengths else 1.0
beat_strengths.extend([avg_strength] * (len(beat_times) - len(beat_strengths)))
else:
beat_strengths = [1.0] * len(beat_times)
else:
beat_strengths = [1.0] * len(beat_times)
# STEP 4: Calculate intervals between beats
intervals = np.diff(beat_times).tolist() if len(beat_times) > 1 else []
# STEP 5: Improved time signature detection for various patterns
# Start with default assumption
time_signature = 4
if len(beat_strengths) > 8:
# Use autocorrelation to find periodicity in beat strengths
if len(beat_strengths) > 4:
# Normalize beat strengths for better pattern detection
norm_strengths = np.array(beat_strengths)
if np.max(norm_strengths) > 0:
norm_strengths = norm_strengths / np.max(norm_strengths)
# Compute autocorrelation to find periodic patterns (N)
ac = librosa.autocorrelate(norm_strengths, max_size=len(norm_strengths)//2)
# Find peaks in autocorrelation (indicates periodicity)
if len(ac) > 3: # Need enough data for peak picking
# Find peaks after lag 0
peaks = librosa.util.peak_pick(ac[1:], pre_max=1, post_max=1, pre_avg=1, post_avg=1, delta=0.1, wait=1)
peaks = peaks + 1 # Adjust for the removed lag 0
if len(peaks) > 0:
# Get the first significant peak position (cycle length N)
N = peaks[0]
# Map common cycle lengths to time signatures
if 2 <= N <= 3:
time_signature = N # Direct mapping for simple cases
elif N == 6:
time_signature = 3 # Could be 6/8 or 3/4 with subdivisions
elif N == 8:
time_signature = 4 # Could be 4/4 with subdivisions
elif N == 5 or N == 7:
time_signature = N # Odd time signatures like 5/4 or 7/8
# Otherwise, keep default 4
# Use adaptive thresholds for pattern detection instead of fixed values
if len(beat_strengths) > 3:
# Calculate z-scores to identify statistically significant strong beats
strengths_array = np.array(beat_strengths)
mean_strength = np.mean(strengths_array)
std_strength = np.std(strengths_array)
if std_strength > 0:
z_scores = (strengths_array - mean_strength) / std_strength
# Count beats with z-score > 1 in groups of 3 (for 3/4 time)
strong_beat_pattern = []
for i in range(0, len(z_scores) - 2, 3):
# First beat should be significantly stronger (z > 1)
# Second and third beats should be weaker
if z_scores[i] > 1 and z_scores[i+1] < 0.5 and z_scores[i+2] < 0.5:
strong_beat_pattern.append(1)
else:
strong_beat_pattern.append(0)
# Check if we have a clear 3/4 pattern
if strong_beat_pattern and len(strong_beat_pattern) >= 3:
three_pattern_probability = sum(strong_beat_pattern) / len(strong_beat_pattern)
if three_pattern_probability > 0.6:
time_signature = 3
# STEP 6: Enhanced phrase detection with adaptive thresholds
phrases = []
current_phrase = []
if len(beat_times) > 0:
# Calculate adaptive thresholds using percentiles instead of fixed ratios
if len(beat_strengths) > 4:
# Define thresholds based on distribution rather than fixed values
strong_threshold = np.percentile(beat_strengths, 75) # Top 25% are "strong" beats
# For gaps, calculate significant deviation using z-scores if we have intervals
if intervals:
mean_interval = np.mean(intervals)
std_interval = np.std(intervals)
# A significant gap is > 1.5 standard deviations above mean
significant_gap = mean_interval + (1.5 * std_interval) if std_interval > 0 else mean_interval * 1.3
else:
significant_gap = 0
else:
# Fallback for limited data
strong_threshold = np.max(beat_strengths) * 0.8 if beat_strengths else 1.0
significant_gap = 0
# Identify phrase boundaries
for i in range(len(beat_times)):
current_phrase.append(i)
# Check for phrase boundary conditions
if i < len(beat_times) - 1:
# Strong beat coming up (using adaptive threshold)
is_stronger_next = False
if i < len(beat_strengths) - 1:
is_stronger_next = beat_strengths[i+1] > strong_threshold and beat_strengths[i+1] > beat_strengths[i] * 1.1
# Significant gap (using adaptive threshold)
is_longer_gap = False
if i < len(beat_times) - 1 and intervals and i < len(intervals):
is_longer_gap = intervals[i] > significant_gap
# Measure boundary based on time signature
is_measure_boundary = (i + 1) % time_signature == 0 and i > 0
# Combined decision for phrase boundary
if ((is_stronger_next or is_longer_gap) and len(current_phrase) >= 2) or \
(is_measure_boundary and len(current_phrase) >= time_signature):
phrases.append(current_phrase)
current_phrase = []
# Add the last phrase if not empty
if current_phrase and len(current_phrase) >= 2:
phrases.append(current_phrase)
# Ensure we have at least one phrase
if not phrases and len(beat_times) >= 2:
# Default to grouping by measures based on detected time signature
for i in range(0, len(beat_times), time_signature):
end = min(i + time_signature, len(beat_times))
if end - i >= 2: # Ensure at least 2 beats per phrase
phrases.append(list(range(i, end)))
# Return in the original format for compatibility
return {
"tempo": tempo,
"beat_frames": beat_frames,
"beat_times": beat_times,
"beat_count": len(beat_times),
"beat_strengths": beat_strengths,
"intervals": intervals,
"time_signature": time_signature,
"phrases": phrases
}
def detect_sections(y, sr):
"""
Advanced detection of musical sections with adaptive segmentation and improved classification.
Parameters:
y: Audio time series
sr: Sample rate
Returns:
A list of section dictionaries with type, start time, end time, and duration
"""
# Step 1: Extract rich feature set for comprehensive analysis
# ----------------------------------------------------------------------
hop_length = 512 # Common hop length for feature extraction
# Spectral features
S = np.abs(librosa.stft(y, hop_length=hop_length))
contrast = librosa.feature.spectral_contrast(S=S, sr=sr)
# Harmonic features with CQT-based chroma (better for harmonic analysis)
chroma = librosa.feature.chroma_cqt(y=y, sr=sr, hop_length=hop_length)
# Timbral features
mfcc = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13, hop_length=hop_length)
# Energy features
rms = librosa.feature.rms(y=y, hop_length=hop_length)
# Harmonic-percussive source separation for better rhythm analysis
y_harmonic, y_percussive = librosa.effects.hpss(y)
percussive_rms = librosa.feature.rms(y=y_percussive, hop_length=hop_length)
# Step 2: Adaptive determination of segment count based on song complexity
# ----------------------------------------------------------------------
duration = librosa.get_duration(y=y, sr=sr)
# Feature preparation for adaptive segmentation
# Stack features with proper normalization (addressing the scale issue)
feature_stack = np.vstack([
librosa.util.normalize(contrast),
librosa.util.normalize(chroma),
librosa.util.normalize(mfcc),
librosa.util.normalize(rms)
])
# Transpose to get time as first dimension
feature_matrix = feature_stack.T
# Step 3: Feature fusion using dimensionality reduction (addressing simple summation issue)
# ----------------------------------------------------------------------
# Apply PCA to reduce dimensionality while preserving relationships
from sklearn.decomposition import PCA
# Handle very short audio files
n_components = min(8, feature_matrix.shape[0], feature_matrix.shape[1])
if feature_matrix.shape[0] > n_components and feature_matrix.shape[1] > 0:
try:
pca = PCA(n_components=n_components)
reduced_features = pca.fit_transform(feature_matrix)
except Exception as e:
print(f"PCA failed, falling back to original features: {e}")
# Fallback to simpler approach if PCA fails
reduced_features = feature_matrix
else:
# Not enough data for PCA
reduced_features = feature_matrix
# Step 4: Adaptive determination of optimal segment count
# ----------------------------------------------------------------------
# Initialize range of segment counts to try
min_segments = max(2, int(duration / 60)) # At least 2 segments, roughly 1 per minute
max_segments = min(10, int(duration / 20)) # At most 10 segments, roughly 1 per 20 seconds
# Ensure reasonable bounds
min_segments = max(2, min(min_segments, 4))
max_segments = max(min_segments + 1, min(max_segments, 8))
# Try different segment counts and evaluate with silhouette score
best_segments = min_segments
best_score = -1
from sklearn.metrics import silhouette_score
from sklearn.cluster import AgglomerativeClustering
# Only do this analysis if we have enough data
if reduced_features.shape[0] > max_segments:
for n_segments in range(min_segments, max_segments + 1):
try:
# Perform agglomerative clustering
clustering = AgglomerativeClustering(n_clusters=n_segments)
labels = clustering.fit_predict(reduced_features)
# Calculate silhouette score if we have enough samples
if len(np.unique(labels)) > 1 and len(labels) > n_segments + 1:
score = silhouette_score(reduced_features, labels)
if score > best_score:
best_score = score
best_segments = n_segments
except Exception as e:
print(f"Clustering with {n_segments} segments failed: {e}")
continue
# Use the optimal segment count for final segmentation
n_segments = best_segments
# Step 5: Final segmentation using the optimal segment count
# ----------------------------------------------------------------------
# Method 1: Use agglomerative clustering on the reduced features
try:
clustering = AgglomerativeClustering(n_clusters=n_segments)
labels = clustering.fit_predict(reduced_features)
# Convert cluster labels to boundaries by finding where labels change
boundaries = [0] # Start with the beginning
for i in range(1, len(labels)):
if labels[i] != labels[i-1]:
boundaries.append(i)
boundaries.append(len(labels)) # Add the end
# Convert to frames
bounds_frames = np.array(boundaries)
except Exception as e:
print(f"Final clustering failed: {e}")
# Fallback to librosa's agglomerative clustering on original features
bounds_frames = librosa.segment.agglomerative(feature_stack, n_segments)
# Step 6: Detect harmonic changes for better bridge identification
# ----------------------------------------------------------------------
# Calculate tonal centroids to identify key changes
tonnetz = librosa.feature.tonnetz(y=y_harmonic, sr=sr)
# Look for significant changes in harmonic content
harmonic_changes = []
if tonnetz.shape[1] > 1:
tonnetz_diff = np.sum(np.abs(np.diff(tonnetz, axis=1)), axis=0)
# Normalize
if np.max(tonnetz_diff) > 0:
tonnetz_diff = tonnetz_diff / np.max(tonnetz_diff)
# Identify significant harmonic changes (potential bridges or section changes)
threshold = np.percentile(tonnetz_diff, 90) # Top 10% most significant changes
for i in range(len(tonnetz_diff)):
if tonnetz_diff[i] > threshold:
harmonic_changes.append(i)
# Step 7: Convert boundaries to time and create sections
# ----------------------------------------------------------------------
bounds_times = librosa.frames_to_time(bounds_frames, sr=sr, hop_length=hop_length)
# Create sections from the boundaries
sections = []
for i in range(len(bounds_times) - 1):
start = bounds_times[i]
end = bounds_times[i+1]
duration = end - start
# Skip extremely short sections
if duration < 4 and i > 0 and i < len(bounds_times) - 2:
continue
# Step 8: Section type classification with improved musical features
# ----------------------------------------------------------------------
# Get indices for this section
start_idx = bounds_frames[i]
end_idx = bounds_frames[i+1]
# Basic section type based on position
if i == 0:
section_type = "intro"
elif i == len(bounds_times) - 2:
section_type = "outro"
else:
# Default to alternating verse/chorus
section_type = "chorus" if i % 2 == 1 else "verse"
# Only analyze characteristics if we have enough frames
if end_idx > start_idx:
# Calculate musical characteristics for this section
# 1. Energy profile
energy = np.mean(rms[0, start_idx:end_idx])
# 2. Rhythm intensity (percussive content)
rhythm_intensity = np.mean(percussive_rms[0, start_idx:end_idx])
# 3. Harmonic complexity
if chroma.shape[1] > 0:
chroma_var = np.var(chroma[:, start_idx:end_idx])
else:
chroma_var = 0
# 4. Timbral characteristics
if mfcc.shape[1] > 0:
mfcc_mean = np.mean(mfcc[:, start_idx:end_idx], axis=1)
mfcc_var = np.var(mfcc[:, start_idx:end_idx], axis=1)
else:
mfcc_mean = np.zeros(mfcc.shape[0])
mfcc_var = np.zeros(mfcc.shape[0])
# 5. Check for harmonic changes within this section (for bridge detection)
has_harmonic_change = False
for change_idx in harmonic_changes:
if start_idx <= change_idx < end_idx:
has_harmonic_change = True
break
# Calculate relative metrics by comparing to the entire song
relative_energy = energy / np.mean(rms)
relative_rhythm = rhythm_intensity / np.mean(percussive_rms)
# Improved section type classification:
# Chorus: High energy, strong rhythm, less harmonic variation
if (relative_energy > 1.1 and relative_rhythm > 1.1 and
section_type != "intro" and section_type != "outro"):
section_type = "chorus"
# Verse: Moderate energy, moderate rhythm, more harmonic variation
elif (0.8 <= relative_energy <= 1.1 and chroma_var > np.mean(np.var(chroma, axis=1)) and
section_type != "intro" and section_type != "outro"):
section_type = "verse"
# Bridge: Often has harmonic changes, energy drop, or unique timbral characteristics
if (section_type not in ["intro", "outro"] and
(has_harmonic_change or
(0.5 <= relative_energy <= 0.9 and duration < 30) or
np.any(mfcc_var > np.percentile(np.var(mfcc, axis=1), 75)))):
section_type = "bridge"
# Add section to the list
sections.append({
"type": section_type,
"start": start,
"end": end,
"duration": duration
})
# Post-processing: Ensure reasonable section sequence and durations
for i in range(1, len(sections) - 1):
# Check for unreasonably short sections and merge them
if sections[i]["duration"] < 8 and sections[i]["type"] not in ["intro", "outro", "bridge"]:
# Either merge with previous or next section based on similarity
prev_type = sections[i-1]["type"]
next_type = sections[i+1]["type"] if i+1 < len(sections) else "outro"
# Default to merging with the previous section
sections[i]["type"] = prev_type
# Filter out any remaining extremely short sections
sections = [s for s in sections if s["duration"] >= 5 or
s["type"] == "intro" or s["type"] == "outro"]
return sections
def create_flexible_syllable_templates(beats_info, genre=None, phrase_mode='default'):
"""
Create enhanced syllable templates based on beat patterns with improved musical intelligence.
Parameters:
beats_info: Dictionary containing beat analysis data
genre: Optional genre to influence template creation
phrase_mode: 'default' uses provided phrases, 'auto' forces recalculation
Returns:
String of syllable templates with embedded strength values and flexible timing
"""
import numpy as np
from sklearn.cluster import KMeans
# Extract basic beat information
beat_times = beats_info.get("beat_times", [])
beat_strengths = beats_info.get("beat_strengths", [1.0] * len(beat_times))
tempo = beats_info.get("tempo", 120)
time_signature = beats_info.get("time_signature", 4)
# Early return for insufficient data
if len(beat_times) < 2:
return "S(1.0):1-w(0.5):1|S(1.0):1-w(0.5):1" # Default fallback pattern
# Step 1: Adaptive thresholding using k-means clustering
# ----------------------------------------------------------------------
if len(beat_strengths) >= 6: # Need enough data points for clustering
# Reshape for k-means
X = np.array(beat_strengths).reshape(-1, 1)
# Use k-means with 3 clusters for Strong, Medium, Weak classification
kmeans = KMeans(n_clusters=3, random_state=0, n_init=10).fit(X)
# Find the centroid values and sort them
centroids = sorted([float(c[0]) for c in kmeans.cluster_centers_])
# Map to thresholds (using the midpoints between centroids)
if len(centroids) >= 3:
medium_threshold = (centroids[0] + centroids[1]) / 2
strong_threshold = (centroids[1] + centroids[2]) / 2
else:
# Fallback if clustering doesn't work well
medium_threshold = np.percentile(beat_strengths, 33)
strong_threshold = np.percentile(beat_strengths, 66)
else:
# For limited data, use percentile-based approach
medium_threshold = np.percentile(beat_strengths, 33)
strong_threshold = np.percentile(beat_strengths, 66)
# Step 2: Create or refine phrases based on mode
# ----------------------------------------------------------------------
phrases = beats_info.get("phrases", [])
if phrase_mode == 'auto' or not phrases:
# Create phrases based on time signature and beat strengths
phrases = []
current_phrase = []
for i in range(len(beat_times)):
current_phrase.append(i)
# Check for natural phrase endings
if (i + 1) % time_signature == 0 or i == len(beat_times) - 1:
if len(current_phrase) >= 2: # Ensure minimum phrase length
phrases.append(current_phrase)
current_phrase = []
# Add any remaining beats
if current_phrase and len(current_phrase) >= 2:
phrases.append(current_phrase)
# Step 3: Calculate continuous tempo-to-syllable mapping function
# ----------------------------------------------------------------------
def tempo_to_syllable_base(tempo):
"""Continuous function mapping tempo to syllable base count"""
# Sigmoid-like function that smoothly transitions between syllable counts
if tempo > 180:
return 1.0
elif tempo > 140:
return 1.0 + (180 - tempo) * 0.02 # Gradual increase 1.0 → 1.8
elif tempo > 100:
return 1.8 + (140 - tempo) * 0.01 # Gradual increase 1.8 → 2.2
elif tempo > 70:
return 2.2 + (100 - tempo) * 0.02 # Gradual increase 2.2 → 2.8
else:
return 2.8 + max(0, (70 - tempo) * 0.04) # Continue increasing for very slow tempos
# Step 4: Generate enhanced templates with flexible timing
# ----------------------------------------------------------------------
syllable_templates = []
for phrase in phrases:
# Skip empty phrases
if not phrase:
continue
# Extract beat strengths for this phrase
phrase_strengths = [beat_strengths[i] for i in phrase if i < len(beat_strengths)]
if not phrase_strengths:
phrase_strengths = [1.0] * len(phrase)
# Apply adaptive thresholding for stress pattern detection
stress_pattern = []
for i, strength in enumerate(phrase_strengths):
# Consider both strength and metrical position
metrical_position = i % time_signature
# Apply positional boost for strong metrical positions
position_boost = 0.15 if metrical_position == 0 else 0
# Secondary stress on beat 3 in 4/4 time
if time_signature == 4 and metrical_position == 2:
position_boost = 0.08
effective_strength = strength + position_boost
if effective_strength >= strong_threshold:
stress_pattern.append(("S", effective_strength)) # Strong beat with strength
elif effective_strength >= medium_threshold:
stress_pattern.append(("m", effective_strength)) # Medium beat with strength
else:
stress_pattern.append(("w", effective_strength)) # Weak beat with strength
# Step 5: Calculate syllable counts using continuous function
# ----------------------------------------------------------------------
detailed_template = []
for i, (stress_type, strength) in enumerate(stress_pattern):
# Get base syllable count from tempo
base_syllables = tempo_to_syllable_base(tempo)
# Adjust based on stress type
if stress_type == "S":
syllable_factor = 1.2 # More syllables for strong beats
elif stress_type == "m":
syllable_factor = 1.0 # Normal for medium beats
else:
syllable_factor = 0.8 # Fewer for weak beats
# Apply genre-specific adjustments
genre_factor = 1.0
if genre:
genre = genre.lower()
if any(term in genre for term in ["rap", "hip hop", "hip-hop"]):
genre_factor = 1.4 # Much higher syllable density for rap
elif any(term in genre for term in ["folk", "country", "ballad"]):
genre_factor = 0.8 # Lower density for folk styles
# Calculate adjusted syllable count
raw_count = base_syllables * syllable_factor * genre_factor
# Allow for more flexible syllable counts with non-integer values
# Round to multiples of 0.5 for half-syllable precision
rounded_count = round(raw_count * 2) / 2
# Limit to reasonable range (0.5 to 4)
syllable_count = max(0.5, min(4, rounded_count))
# Format with embedded strength value for reversibility
# Convert strength to 2-decimal precision percentage
strength_pct = int(strength * 100) / 100
detailed_template.append(f"{stress_type}({strength_pct}):{syllable_count}")
# Join beat templates for this phrase
phrase_template = "-".join(detailed_template)
syllable_templates.append(phrase_template)
# Step 6: Ensure valid output with reasonable defaults
# ----------------------------------------------------------------------
if not syllable_templates:
# Create a sensible default based on time signature
if time_signature == 3:
syllable_templates = ["S(0.95):2-w(0.4):1-w(0.35):1"] # 3/4 default
else:
syllable_templates = ["S(0.95):2-w(0.4):1-m(0.7):1.5-w(0.35):1"] # 4/4 default
# Join all phrase templates with the original separator for compatibility
return "|".join(syllable_templates)
def format_syllable_templates_for_prompt(syllable_templates, arrow="→", line_wrap=10,
structured_output=False, beat_types=None):
"""
Convert technical syllable templates into clear, human-readable instructions with
enhanced flexibility and customization options.
Parameters:
syllable_templates: String or list of templates
arrow: Symbol to use between beats (default: "→")
line_wrap: Number of beats before automatic line wrapping (0 = no wrapping)
structured_output: If True, return structured data instead of text
beat_types: Custom mapping for beat types (default: None, uses standard mapping)
Returns:
Human-readable instructions or structured data depending on parameters
"""
if not syllable_templates:
return {} if structured_output else ""
# Define standard beat type mapping (extensible)
default_beat_types = {
"S": {"name": "STRONG", "description": "stressed syllable"},
"m": {"name": "medium", "description": "medium-stressed syllable"},
"w": {"name": "weak", "description": "unstressed syllable"},
"X": {"name": "EXTRA", "description": "extra strong syllable"},
"L": {"name": "legato", "description": "connected/tied syllable"}
}
# Use custom mapping if provided, otherwise use default
beat_types = beat_types or default_beat_types
# Initialize structured output if requested
structured_data = {"lines": [], "explanations": []} if structured_output else None
# Improved format detection - more robust than just checking for "|"
is_enhanced_format = False
# Check if it's a string with enhanced format patterns
if isinstance(syllable_templates, str):
# Look for enhanced format patterns - check for beat type indicators
if any(bt + "(" in syllable_templates or bt + ":" in syllable_templates or bt + "[" in syllable_templates
for bt in beat_types.keys()):
is_enhanced_format = True
# Secondary check for the "|" delimiter between phrases
elif "|" in syllable_templates:
is_enhanced_format = True
# Initialize the output with a brief explanatory header
output = []
if is_enhanced_format:
# Split into individual phrase templates
phrases = syllable_templates.split("|") if "|" in syllable_templates else [syllable_templates]
# Process each phrase into human-readable instructions
for i, phrase in enumerate(phrases):
# Check for special annotations
has_swing = "(swing)" in phrase
if has_swing:
phrase = phrase.replace("(swing)", "") # Remove annotation for processing
beats = phrase.split("-")
beat_instructions = []
# Process each beat in the phrase
for j, beat in enumerate(beats):
# Extract beat type and information
beat_info = {"original": beat, "type": None, "count": None, "strength": None}
# Handle enhanced format with embedded strength values: S(0.95):2
if "(" in beat and ")" in beat and ":" in beat:
parts = beat.split(":")
beat_type = parts[0].split("(")[0] # Extract beat type
strength = parts[0].split("(")[1].rstrip(")") # Extract strength value
count = parts[1] # Extract syllable count
beat_info["type"] = beat_type
beat_info["count"] = count
beat_info["strength"] = strength
# Handle simpler format: S2, m1, w1
elif any(beat.startswith(bt) for bt in beat_types.keys()) and len(beat) > 1:
beat_type = beat[0]
count = beat[1:]
beat_info["type"] = beat_type
beat_info["count"] = count
# Fallback for any other format
else:
beat_instructions.append(beat)
continue
# Format the beat instruction based on type
if beat_info["type"] in beat_types:
type_name = beat_types[beat_info["type"]]["name"]
if beat_info["strength"]:
beat_instructions.append(f"{type_name}({beat_info['count']}) [{beat_info['strength']}]")
else:
beat_instructions.append(f"{type_name}({beat_info['count']})")
else:
# Unknown beat type, use as-is
beat_instructions.append(beat)
# Handle line wrapping for readability
if line_wrap > 0 and len(beat_instructions) > line_wrap:
wrapped_instructions = []
for k in range(0, len(beat_instructions), line_wrap):
section = beat_instructions[k:k+line_wrap]
wrapped_instructions.append(f"{arrow} ".join(section))
line_desc = f"\n {arrow} ".join(wrapped_instructions)
else:
line_desc = f" {arrow} ".join(beat_instructions)
# Add swing notation if present
if has_swing:
line_desc += " [with swing feel]"
# Add to output
line_output = f"Line {i+1}: {line_desc}"
output.append(line_output)
if structured_output:
structured_data["lines"].append({
"line_number": i+1,
"beats": [{"original": beats[j],
"type": beat_info.get("type"),
"count": beat_info.get("count"),
"strength": beat_info.get("strength")}
for j, beat_info in enumerate([b for b in beats if isinstance(b, dict)])],
"has_swing": has_swing
})
# Add explanation of notation after the lines
explanation = [
"\n📝 UNDERSTANDING THE NOTATION:"
]
# Add descriptions for each beat type that was actually used
used_beat_types = set()
for phrase in phrases:
for beat in phrase.split("-"):
for bt in beat_types.keys():
if beat.startswith(bt):
used_beat_types.add(bt)
for bt in used_beat_types:
if bt in beat_types:
name = beat_types[bt]["name"]
desc = beat_types[bt]["description"]
explanation.append(f"- {name}(n): Place a {desc} here, plus (n-1) unstressed syllables")
explanation.extend([
f"- {arrow}: Indicates flow from one beat to the next",
"- [0.xx]: Beat strength value (higher = more emphasis needed)"
])
output.extend(explanation)
if structured_output:
structured_data["explanations"] = explanation
# Add examples for half-syllable values if they appear in the templates
has_half_syllables = any((".5" in beat) for phrase in phrases for beat in phrase.split("-"))
if has_half_syllables:
half_syllable_examples = [
"\n🎵 HALF-SYLLABLE EXAMPLES:",
"- STRONG(1.5): One stressed syllable followed by an unstressed half-syllable",
" Example: \"LOVE you\" where \"LOVE\" is stressed and \"you\" is quick",
"- medium(2.5): One medium syllable plus one-and-a-half unstressed syllables",
" Example: \"Wait for the\" where \"Wait\" is medium-stressed and \"for the\" is quick"
]
output.extend(half_syllable_examples)
if structured_output:
structured_data["half_syllable_examples"] = half_syllable_examples
# Add swing explanation if needed
if any("swing" in phrase for phrase in phrases):
swing_guide = [
"\n🎶 SWING RHYTHM GUIDE:",
"- In swing, syllables should be unevenly timed (long-short pattern)",
"- Example: \"SUM-mer TIME\" in swing feels like \"SUM...mer-TIME\" with delay"
]
output.extend(swing_guide)
if structured_output:
structured_data["swing_guide"] = swing_guide
# Handle the original format or segment dictionaries
else:
formatted_lines = []
if isinstance(syllable_templates, list):
for i, template in enumerate(syllable_templates):
if isinstance(template, dict) and "syllable_template" in template:
line = f"Line {i+1}: {template['syllable_template']} syllables"
formatted_lines.append(line)
if structured_output:
structured_data["lines"].append({
"line_number": i+1,
"syllable_count": template["syllable_template"]
})
elif isinstance(template, str):
line = f"Line {i+1}: {template} syllables"
formatted_lines.append(line)
if structured_output:
structured_data["lines"].append({
"line_number": i+1,
"syllable_count": template
})
output = formatted_lines
else:
output = [str(syllable_templates)]
if structured_output:
structured_data["raw_content"] = str(syllable_templates)
# Add general application advice
application_tips = [
"\n💡 APPLICATION TIPS:",
"1. Strong beats need naturally stressed syllables (like the START of \"RE-mem-ber\")",
"2. Place important words on strong beats for natural emphasis",
"3. Vowel sounds work best for sustained or emphasized syllables",
"4. Keep consonant clusters (like \"str\" or \"thr\") on weak beats"
]
output.extend(application_tips)
if structured_output:
structured_data["application_tips"] = application_tips
return structured_data
return "\n".join(output)
def verify_flexible_syllable_counts(lyrics, templates):
"""
Enhanced verification of syllable counts and stress patterns with precise alignment analysis
and detailed feedback for all phrases in a template.
"""
import re
import pronouncing
import numpy as np
import functools
from itertools import chain
# Apply caching to improve performance for repeated word lookups
@functools.lru_cache(maxsize=512)
def cached_phones_for_word(word):
return pronouncing.phones_for_word(word)
@functools.lru_cache(maxsize=512)
def count_syllables_for_word(word):
"""Count syllables in a single word with caching for performance."""
# Try using pronouncing library first
pronunciations = cached_phones_for_word(word.lower())
if pronunciations:
return pronouncing.syllable_count(pronunciations[0])
# Fallback method for words not in the pronouncing dictionary
vowels = "aeiouy"
word = word.lower()
count = 0
prev_is_vowel = False
for char in word:
is_vowel = char in vowels
if is_vowel and not prev_is_vowel:
count += 1
prev_is_vowel = is_vowel
# Handle special cases
if word.endswith('e') and not word.endswith('le'):
count -= 1
if word.endswith('le') and len(word) > 2 and word[-3] not in vowels:
count += 1
if count == 0:
count = 1
return count
@functools.lru_cache(maxsize=512)
def get_word_stress(word):
"""Get the stress pattern for a word with improved fallback handling."""
pronunciations = cached_phones_for_word(word.lower())
if pronunciations:
return pronouncing.stresses(pronunciations[0])
# Enhanced fallback for words not in the dictionary
syllables = count_syllables_for_word(word)
# Common English stress patterns by word length
if syllables == 1:
return "1" # Single syllable words are stressed
elif syllables == 2:
# Most 2-syllable nouns and adjectives stress first syllable
# Common endings that indicate second-syllable stress
second_syllable_stress = ["ing", "er", "or", "ize", "ise", "ate", "ect", "end", "ure"]
if any(word.endswith(ending) for ending in second_syllable_stress):
return "01"
else:
return "10" # Default for 2-syllable words
elif syllables == 3:
# Common endings for specific stress patterns in 3-syllable words
if any(word.endswith(ending) for ending in ["ity", "ety", "ify", "ogy", "graphy"]):
return "100" # First syllable stress
elif any(word.endswith(ending) for ending in ["ation", "ious", "itis"]):
return "010" # Middle syllable stress
else:
return "100" # Default for 3-syllable words
else:
# For longer words, use common English patterns
return "1" + "0" * (syllables - 1)
# Split lyrics into lines
lines = [line.strip() for line in lyrics.split("\n") if line.strip()]
# Initialize tracking variables
verification_notes = []
detailed_analysis = []
stress_misalignments = []
total_mismatch_count = 0
# Process each lyric line against its template
for i, line in enumerate(lines):
if i >= len(templates):
break
template = templates[i]
# Extract the template string from different possible formats
if isinstance(template, dict) and "syllable_template" in template:
template_str = template["syllable_template"]
elif isinstance(template, str):
template_str = template
else:
continue
# Handle multiple phrases in template - process ALL phrases, not just the first
template_phrases = [template_str]
if "|" in template_str:
template_phrases = template_str.split("|")
# Check against all phrases and find the best match
best_match_diff = float('inf')
best_match_phrase = None
best_phrase_beats = None
actual_count = count_syllables(line)
for phrase_idx, phrase in enumerate(template_phrases):
# Extract beat patterns and expected syllable counts from template
beats_info = []
total_expected = 0
# Enhanced template parsing
if "-" in phrase:
beat_templates = phrase.split("-")
# Parse each beat template
for beat in beat_templates:
beat_info = {"original": beat, "type": None, "count": 1, "strength": None}
# Handle templates with embedded strength values: S(0.95):2
if "(" in beat and ")" in beat and ":" in beat:
parts = beat.split(":")
beat_type = parts[0].split("(")[0]
try:
strength = float(parts[0].split("(")[1].rstrip(")"))
except ValueError:
strength = 1.0
# Handle potential float syllable counts
try:
count = float(parts[1])
# Convert to int if it's a whole number
if count == int(count):
count = int(count)
except ValueError:
count = 1
beat_info.update({
"type": beat_type,
"count": count,
"strength": strength
})
# Handle simple format: S2, m1, w1
elif any(beat.startswith(x) for x in ["S", "m", "w", "X", "L"]):
beat_type = beat[0]
# Extract count, supporting float values
try:
count_str = beat[1:]
count = float(count_str)
if count == int(count):
count = int(count)
except ValueError:
count = 1
beat_info.update({
"type": beat_type,
"count": count
})
# Legacy format - just numbers
else:
try:
count = float(beat)
if count == int(count):
count = int(count)
beat_info["count"] = count
except ValueError:
pass
beats_info.append(beat_info)
total_expected += beat_info["count"]
# Compare this phrase to actual syllable count
phrase_diff = abs(actual_count - total_expected)
# Adaptive threshold based on expected syllables
expected_ratio = 0.15 if total_expected > 10 else 0.25
phrase_threshold = max(1, round(total_expected * expected_ratio))
# If this is the best match so far, store it
if phrase_diff < best_match_diff:
best_match_diff = phrase_diff
best_match_phrase = phrase
best_phrase_beats = beats_info
# For very simple templates without "-"
else:
try:
total_expected = float(phrase)
phrase_diff = abs(actual_count - total_expected)
if phrase_diff < best_match_diff:
best_match_diff = phrase_diff
best_match_phrase = phrase
best_phrase_beats = [{"count": total_expected}]
except ValueError:
pass
# If we found a reasonable match, proceed with analysis
if best_match_phrase and best_phrase_beats:
total_expected = sum(beat["count"] for beat in best_phrase_beats)
# Calculate adaptive threshold based on expected syllables
expected_ratio = 0.15 if total_expected > 10 else 0.25
threshold = max(1, round(total_expected * expected_ratio))
# Check if total syllable count is significantly off
if total_expected > 0 and best_match_diff > threshold:
verification_notes.append(f"Line {i+1}: Expected {total_expected} syllables, got {actual_count}")
total_mismatch_count += 1
# Extract words and perform detailed alignment analysis
words = re.findall(r'\b[a-zA-Z]+\b', line.lower())
# Get syllable count and stress for each word
word_analysis = []
cumulative_syllables = 0
for word in words:
syllable_count = count_syllables_for_word(word)
# Get stress pattern
stress_pattern = get_word_stress(word)
word_analysis.append({
"word": word,
"syllables": syllable_count,
"stress_pattern": stress_pattern,
"position": cumulative_syllables
})
cumulative_syllables += syllable_count
# Analyze alignment with beats - only if there are beat types
if best_phrase_beats and any(b.get("type") == "S" for b in best_phrase_beats if "type" in b):
# Identify positions where strong syllables should fall
strong_positions = []
current_pos = 0
for beat in best_phrase_beats:
if beat.get("type") == "S":
strong_positions.append(current_pos)
current_pos += beat.get("count", 1)
# Check if strong syllables align with strong beats
alignment_issues = []
for pos in strong_positions:
# Find which word contains this position
misaligned_word = None
for word_info in word_analysis:
word_start = word_info["position"]
word_end = word_start + word_info["syllables"]
if word_start <= pos < word_end:
# Check if a stressed syllable falls on this position
syllable_in_word = pos - word_start
# Get stress pattern for this word
stress = word_info["stress_pattern"]
# If we have stress information and this syllable isn't stressed
if stress and syllable_in_word < len(stress) and stress[syllable_in_word] != '1':
misaligned_word = word_info["word"]
alignment_issues.append(f"'{word_info['word']}' (unstressed syllable on strong beat)")
stress_misalignments.append({
"line": i+1,
"word": word_info["word"],
"position": pos,
"suggestion": get_stress_aligned_alternatives(word_info["word"], syllable_in_word)
})
break
if alignment_issues:
verification_notes.append(f" → Stress misalignments: {', '.join(alignment_issues)}")
# Generate a visual alignment map for better understanding
alignment_map = generate_alignment_visualization(line, best_phrase_beats, word_analysis)
if alignment_map:
detailed_analysis.append(f"Line {i+1} Alignment Analysis:\n{alignment_map}")
else:
# If no matching template was found
verification_notes.append(f"Line {i+1}: Unable to find matching template pattern")
# Only add detailed analysis if we have rhythm mismatches
if verification_notes:
lyrics += "\n\n[Note: Potential rhythm mismatches detected in these lines:]\n"
lyrics += "\n".join(verification_notes)
if detailed_analysis:
lyrics += "\n\n[Detailed Alignment Analysis:]\n"
lyrics += "\n\n".join(detailed_analysis)
lyrics += "\n\n[How to fix rhythm mismatches:]\n"
lyrics += "1. Make sure stressed syllables (like 'LO' in 'LOV-er') fall on STRONG beats\n"
lyrics += "2. Adjust syllable counts to match the template (add/remove words or use different words)\n"
lyrics += "3. Try using words where natural stress aligns with musical rhythm\n"
# Add specific word substitution suggestions if we found stress misalignments
if stress_misalignments:
lyrics += "\n[Specific word replacement suggestions:]\n"
for issue in stress_misalignments[:5]: # Limit to first 5 issues
if issue["suggestion"]:
lyrics += f"Line {issue['line']}: Consider replacing '{issue['word']}' with: {issue['suggestion']}\n"
return lyrics
def generate_alignment_visualization(line, beats_info, word_analysis):
"""Generate a visual representation of syllable alignment with beats."""
if not beats_info or not word_analysis:
return None
# Create a syllable breakdown with stress information
syllable_breakdown = []
syllable_stresses = []
for word_info in word_analysis:
word = word_info["word"]
syllables = word_info["syllables"]
stress = word_info["stress_pattern"] or ""
# Extend stress pattern if needed
while len(stress) < syllables:
stress += "0"
# Get syllable breakdown
parts = naive_syllable_split(word, syllables)
for i, part in enumerate(parts):
syllable_breakdown.append(part)
if i < len(stress):
syllable_stresses.append(stress[i])
else:
syllable_stresses.append("0")
# Create beat pattern
beat_types = []
current_pos = 0
for beat in beats_info:
beat_type = beat.get("type", "-")
count = beat.get("count", 1)
# Handle whole numbers and half syllables
if isinstance(count, int):
beat_types.extend([beat_type] * count)
else:
# For half syllables, round up and use markers
whole_part = int(count)
frac_part = count - whole_part
if whole_part > 0:
beat_types.extend([beat_type] * whole_part)
if frac_part > 0:
beat_types.append(f"{beat_type}½")
# Ensure we have enough beat types
while len(beat_types) < len(syllable_breakdown):
beat_types.append("-")
# Trim beat types if too many
beat_types = beat_types[:len(syllable_breakdown)]
# Generate the visualization with highlighted misalignments
result = []
# First line: syllable breakdown with stress indicators
syllable_display = []
for i, syllable in enumerate(syllable_breakdown):
if i < len(syllable_stresses) and syllable_stresses[i] == "1":
syllable_display.append(syllable.upper()) # Uppercase for stressed syllables
else:
syllable_display.append(syllable.lower()) # Lowercase for unstressed
result.append(" - ".join(syllable_display))
# Second line: beat indicators with highlighting for misalignments
beat_indicators = []
for i, (syllable, beat_type) in enumerate(zip(syllable_stresses, beat_types)):
if beat_type == "S" or beat_type.startswith("S"):
if syllable == "1":
beat_indicators.append("↑") # Aligned strong beat
else:
beat_indicators.append("❌") # Misaligned strong beat
elif beat_type == "m" or beat_type.startswith("m"):
beat_indicators.append("•") # Medium beat
elif beat_type == "w" or beat_type.startswith("w"):
beat_indicators.append("·") # Weak beat
else:
beat_indicators.append(" ")
result.append(" ".join(beat_indicators))
# Third line: beat types
result.append(" - ".join(beat_types))
return "\n".join(result)
@functools.lru_cache(maxsize=256)
def naive_syllable_split(word, syllable_count):
"""Naively split a word into the specified number of syllables, with caching for performance."""
if syllable_count <= 1:
return [word]
# Common syllable break patterns
vowels = "aeiouy"
consonants = "bcdfghjklmnpqrstvwxz"
# Find potential split points
splits = []
for i in range(1, len(word) - 1):
if word[i] in consonants and word[i-1] in vowels:
splits.append(i)
elif word[i] in vowels and word[i-1] in consonants and word[i+1] in consonants:
splits.append(i+1)
# Ensure we have enough split points
while len(splits) < syllable_count - 1:
for i in range(1, len(word)):
if i not in splits:
splits.append(i)
break
# Sort and limit
splits.sort()
splits = splits[:syllable_count - 1]
# Split the word
result = []
prev = 0
for pos in splits:
result.append(word[prev:pos])
prev = pos
result.append(word[prev:])
return result
def get_stress_aligned_alternatives(word, position_to_stress):
"""Suggest alternative words with proper stress at the required position."""
# This would ideally use a more sophisticated dictionary lookup,
# but here's a simple implementation with common word patterns
syllable_count = count_syllables_for_word(word)
# Common synonyms/replacements by syllable count with stress position
if syllable_count == 2:
if position_to_stress == 0: # Need stress on first syllable
first_stress = ["love-ly", "won-der", "beau-ty", "danc-ing", "dream-ing",
"heart-beat", "sun-light", "moon-light", "star-light"]
return ", ".join(first_stress[:3])
else: # Need stress on second syllable
second_stress = ["be-LIEVE", "a-BOVE", "a-ROUND", "to-DAY", "a-LIVE",
"a-LONE", "be-HOLD", "re-TURN", "de-LIGHT"]
return ", ".join(second_stress[:3])
elif syllable_count == 3:
if position_to_stress == 0: # First syllable stress
return "MEM-o-ry, WON-der-ful, BEAU-ti-ful"
elif position_to_stress == 1: # Second syllable stress
return "a-MAZE-ing, to-GE-ther, for-EV-er"
else: # Third syllable stress
return "un-der-STAND, o-ver-COME, ne-ver-MORE"
# For other cases, just provide general guidance
return f"a word with stress on syllable {position_to_stress + 1}"
def generate_lyrics(genre, duration, emotion_results, song_structure=None):
"""
Generate lyrics based on the genre, emotion, and structure analysis with enhanced rhythmic alignment.
This improved version uses advanced template creation, better formatting, and verification with
potential refinement for lyrics that perfectly match the musical rhythm patterns.
Parameters:
genre: Musical genre of the audio
duration: Duration of the audio in seconds
emotion_results: Dictionary containing emotional analysis results
song_structure: Optional dictionary containing song structure analysis
Returns:
Generated lyrics aligned with the rhythm patterns of the music
"""
# Extract emotion and theme data from analysis results
primary_emotion = emotion_results["emotion_analysis"]["primary_emotion"]
primary_theme = emotion_results["theme_analysis"]["primary_theme"]
# Extract numeric values safely with fallbacks
try:
tempo = float(emotion_results["rhythm_analysis"]["tempo"])
except (KeyError, ValueError, TypeError):
tempo = 0.0
key = emotion_results["tonal_analysis"]["key"]
mode = emotion_results["tonal_analysis"]["mode"]
# Format syllable templates for the prompt
syllable_guidance = ""
templates_for_verification = []
if song_structure:
# Try to use flexible structure if available
if "flexible_structure" in song_structure and song_structure["flexible_structure"]:
flexible = song_structure["flexible_structure"]
if "segments" in flexible and flexible["segments"]:
# Get the segments
segments = flexible["segments"]
# Process each segment to create enhanced rhythmic templates
enhanced_templates = []
for i, segment in enumerate(segments):
if i < 15: # Limit to 15 lines to keep prompt manageable
# Get the beat information for this segment
segment_start = segment["start"]
segment_end = segment["end"]
# Find beats within this segment
segment_beats = []
beat_times = flexible["beats"]["beat_times"]
beat_strengths = flexible["beats"].get("beat_strengths", [])
for j, beat_time in enumerate(beat_times):
if segment_start <= beat_time < segment_end:
# Add this beat to the segment
segment_beats.append(j)
# Create segment-specific beat info
segment_beats_info = {
"beat_times": [beat_times[j] for j in segment_beats],
"tempo": flexible["beats"].get("tempo", 120)
}
if beat_strengths:
segment_beats_info["beat_strengths"] = [
beat_strengths[j] for j in segment_beats
if j < len(beat_strengths)
]
# Create a phrase structure for this segment
segment_beats_info["phrases"] = [segment_beats]
# Generate enhanced template with genre awareness and auto phrasing
enhanced_template = create_flexible_syllable_templates(
segment_beats_info,
genre=genre,
phrase_mode='auto' if i == 0 else 'default'
)
enhanced_templates.append(enhanced_template)
templates_for_verification.append(enhanced_template)
# Format templates with improved formatting
syllable_guidance = "CRITICAL RHYTHM INSTRUCTIONS:\n"
syllable_guidance += "Match each line exactly to this rhythm pattern (STRONG beats need stressed syllables):\n\n"
syllable_guidance += format_syllable_templates_for_prompt(
enhanced_templates,
arrow="→",
line_wrap=8
)
# Note: The enhanced formatter now automatically includes explanations
# Fallback to traditional sections if needed
elif "syllables" in song_structure and song_structure["syllables"]:
syllable_guidance = "RHYTHM PATTERN INSTRUCTIONS:\n"
syllable_guidance += "Follow these syllable patterns for each section:\n\n"
for section in song_structure["syllables"]:
if "syllable_template" in section:
# Process to create enhanced template
section_beats_info = {
"beat_times": [beat for beat in song_structure["beats"]["beat_times"]
if section["start"] <= beat < section["end"]],
"tempo": song_structure["beats"].get("tempo", 120)
}
if "beat_strengths" in song_structure["beats"]:
section_beats_info["beat_strengths"] = [
strength for i, strength in enumerate(song_structure["beats"]["beat_strengths"])
if i < len(song_structure["beats"]["beat_times"]) and
section["start"] <= song_structure["beats"]["beat_times"][i] < section["end"]
]
# Create a phrase structure for this section
section_beats_info["phrases"] = [list(range(len(section_beats_info["beat_times"])))]
# Generate enhanced template with genre awareness
enhanced_template = create_flexible_syllable_templates(
section_beats_info,
genre=genre,
phrase_mode='auto' if section['type'] == 'verse' else 'default'
)
syllable_guidance += f"[{section['type'].capitalize()}]:\n"
syllable_guidance += format_syllable_templates_for_prompt(
enhanced_template,
arrow="→",
line_wrap=6
) + "\n\n"
templates_for_verification.append(section)
elif "syllable_count" in section:
syllable_guidance += f"[{section['type'].capitalize()}]: ~{section['syllable_count']} syllables total\n"
# If we couldn't get specific templates, use general guidance
if not syllable_guidance:
syllable_guidance = "RHYTHM ALIGNMENT INSTRUCTIONS:\n\n"
syllable_guidance += "1. Align stressed syllables with strong beats (usually beats 1 and 3 in 4/4 time)\n"
syllable_guidance += "2. Use unstressed syllables on weak beats (usually beats 2 and 4 in 4/4 time)\n"
syllable_guidance += "3. Use appropriate syllable counts based on tempo:\n"
syllable_guidance += " - Fast tempo (>120 BPM): 4-6 syllables per line\n"
syllable_guidance += " - Medium tempo (90-120 BPM): 6-8 syllables per line\n"
syllable_guidance += " - Slow tempo (<90 BPM): 8-10 syllables per line\n"
# Add examples of syllable-beat alignment with enhanced format
syllable_guidance += "\nEXAMPLES OF PERFECT RHYTHM ALIGNMENT:\n"
syllable_guidance += "Pattern: S(0.95):1 → w(0.4):1 → m(0.7):1 → w(0.3):1\n"
syllable_guidance += "Lyric: 'HEAR the MU-sic PLAY'\n"
syllable_guidance += " ↑ ↑ ↑ ↑\n"
syllable_guidance += " S w m w <- BEAT TYPE\n\n"
syllable_guidance += "Pattern: S(0.9):2 → w(0.3):1 → S(0.85):1 → w(0.4):2\n"
syllable_guidance += "Lyric: 'DANC-ing TO the RHYTHM of LOVE'\n"
syllable_guidance += " ↑ ↑ ↑ ↑ ↑ ↑\n"
syllable_guidance += " S S w S w w <- BEAT TYPE\n\n"
syllable_guidance += "Pattern: S(0.92):1 → m(0.65):2 → S(0.88):1 → w(0.35):1\n"
syllable_guidance += "Lyric: 'TIME keeps FLOW-ing ON and ON'\n"
syllable_guidance += " ↑ ↑ ↑ ↑ ↑ ↑\n"
syllable_guidance += " S m m S w w <- BEAT TYPE\n\n"
# Add genre-specific guidance based on the detected genre
genre_guidance = ""
if any(term in genre.lower() for term in ["rap", "hip-hop", "hip hop"]):
genre_guidance += "\nSPECIFIC GUIDANCE FOR RAP/HIP-HOP RHYTHMS:\n"
genre_guidance += "- Use more syllables per beat for rapid-fire sections\n"
genre_guidance += "- Create internal rhymes within lines, not just at line endings\n"
genre_guidance += "- Emphasize the first beat of each bar with strong consonants\n"
elif any(term in genre.lower() for term in ["electronic", "edm", "techno", "house", "dance"]):
genre_guidance += "\nSPECIFIC GUIDANCE FOR ELECTRONIC MUSIC RHYTHMS:\n"
genre_guidance += "- Use repetitive phrases that build and release tension\n"
genre_guidance += "- Match syllables precisely to the beat grid\n"
genre_guidance += "- Use short, percussive words on strong beats\n"
elif any(term in genre.lower() for term in ["rock", "metal", "punk", "alternative"]):
genre_guidance += "\nSPECIFIC GUIDANCE FOR ROCK RHYTHMS:\n"
genre_guidance += "- Use powerful, emotive words on downbeats\n"
genre_guidance += "- Create contrast between verse and chorus energy levels\n"
genre_guidance += "- Emphasize hooks with simple, memorable phrases\n"
elif any(term in genre.lower() for term in ["folk", "country", "acoustic", "ballad"]):
genre_guidance += "\nSPECIFIC GUIDANCE FOR FOLK/ACOUSTIC RHYTHMS:\n"
genre_guidance += "- Focus on storytelling with clear narrative flow\n"
genre_guidance += "- Use natural speech patterns that flow conversationally\n"
genre_guidance += "- Place important words at the start of phrases\n"
# Add genre guidance to the main guidance
syllable_guidance += genre_guidance
# Determine if we should use traditional sections or not
use_sections = True
if song_structure and "flexible_structure" in song_structure and song_structure["flexible_structure"]:
# If we have more than 4 segments, it's likely not a traditional song structure
if "segments" in song_structure["flexible_structure"]:
segments = song_structure["flexible_structure"]["segments"]
if len(segments) > 4:
use_sections = False
# Calculate appropriate lyrics length and section distribution
try:
if song_structure and "beats" in song_structure:
beats_info = song_structure["beats"]
tempo = beats_info.get("tempo", 120)
time_signature = beats_info.get("time_signature", 4)
lines_structure = calculate_lyrics_length(duration, tempo, time_signature)
# Handle both possible return types
if isinstance(lines_structure, dict):
total_lines = lines_structure["lines_count"]
# Extract section line counts if available
verse_lines = 0
chorus_lines = 0
bridge_lines = 0
for section in lines_structure["sections"]:
if section["type"] == "verse":
verse_lines = section["lines"]
elif section["type"] == "chorus":
chorus_lines = section["lines"]
elif section["type"] == "bridge":
bridge_lines = section["lines"]
else:
# The function returned just an integer (old behavior)
total_lines = lines_structure
# Default section distribution based on total lines
if total_lines <= 6:
verse_lines = 2
chorus_lines = 2
bridge_lines = 0
elif total_lines <= 10:
verse_lines = 3
chorus_lines = 2
bridge_lines = 0
else:
verse_lines = 3
chorus_lines = 2
bridge_lines = 2
else:
# Fallback to simple calculation
total_lines = max(4, int(duration / 10))
# Default section distribution
if total_lines <= 6:
verse_lines = 2
chorus_lines = 2
bridge_lines = 0
elif total_lines <= 10:
verse_lines = 3
chorus_lines = 2
bridge_lines = 0
else:
verse_lines = 3
chorus_lines = 2
bridge_lines = 2
except Exception as e:
print(f"Error calculating lyrics length: {str(e)}")
total_lines = max(4, int(duration / 10))
# Default section distribution
verse_lines = 3
chorus_lines = 2
bridge_lines = 0
# Create enhanced prompt with better rhythm alignment instructions
if use_sections:
# Traditional approach with sections
content = f"""
You are a talented songwriter who specializes in {genre} music.
Write original {genre} song lyrics for a song that is {duration:.1f} seconds long.
Music analysis has detected the following qualities in the music:
- Tempo: {tempo:.1f} BPM
- Key: {key} {mode}
- Primary emotion: {primary_emotion}
- Primary theme: {primary_theme}
{syllable_guidance}
CRITICAL PRINCIPLES FOR RHYTHMIC ALIGNMENT:
1. STRESSED syllables MUST fall on STRONG beats (marked with STRONG in the pattern)
2. Natural word stress patterns must match the beat strength (strong words on strong beats)
3. Line breaks should occur at phrase endings for natural breathing
4. Consonant clusters should be avoided on fast notes and strong beats
5. Open vowels (a, e, o) work better for sustained notes and syllables
6. Pay attention to strength values in the pattern (higher values like 0.95 need stronger emphasis)
7. For half-syllable positions (like S1.5 or m2.5), use short, quick syllables or words with weak vowels
Think step by step about how to match words to the rhythm pattern:
1. First, identify the strong beats in each line pattern
2. Choose words where stressed syllables naturally fall on strong beats
3. Count syllables carefully to ensure they match the pattern precisely
4. Test your line against the pattern by mapping each syllable
The lyrics should:
- Perfectly capture the essence and style of {genre} music
- Express the {primary_emotion} emotion and {primary_theme} theme
- Be approximately {total_lines} lines long
- Follow this structure:
* Verse: {verse_lines} lines
* Chorus: {chorus_lines} lines
* {f'Bridge: {bridge_lines} lines' if bridge_lines > 0 else ''}
- Be completely original
- Match the song duration of {duration:.1f} seconds
Your lyrics:
"""
else:
# Flexible approach without traditional sections
content = f"""
You are a talented songwriter who specializes in {genre} music.
Write original lyrics that match the rhythm of a {genre} music segment that is {duration:.1f} seconds long.
Music analysis has detected the following qualities:
- Tempo: {tempo:.1f} BPM
- Key: {key} {mode}
- Primary emotion: {primary_emotion}
- Primary theme: {primary_theme}
{syllable_guidance}
CRITICAL PRINCIPLES FOR RHYTHMIC ALIGNMENT:
1. STRESSED syllables MUST fall on STRONG beats (marked with STRONG in the pattern)
2. Natural word stress patterns must match the beat strength (strong words on strong beats)
3. Line breaks should occur at phrase endings for natural breathing
4. Consonant clusters should be avoided on fast notes and strong beats
5. Open vowels (a, e, o) work better for sustained notes and syllables
6. Pay attention to strength values in the pattern (higher values like 0.95 need stronger emphasis)
7. For half-syllable positions (like S1.5 or m2.5), use short, quick syllables or words with weak vowels
Think step by step about how to match words to the rhythm pattern:
1. First, identify the strong beats in each line pattern
2. Choose words where stressed syllables naturally fall on strong beats
3. Count syllables carefully to ensure they match the pattern precisely
4. Test your line against the pattern by mapping each syllable
For perfect alignment examples:
- "FEEL the RHY-thm in your SOUL" – stressed syllables on strong beats
- "to-DAY we DANCE a-LONG" – natural speech stress matches musical stress
- "WAIT-ing FOR the SUN to RISE" – syllable emphasis aligns with beat emphasis
The lyrics should:
- Perfectly capture the essence and style of {genre} music
- Express the {primary_emotion} emotion and {primary_theme} theme
- Be completely original
- Maintain a consistent theme throughout
- Match the audio segment duration of {duration:.1f} seconds
DON'T include any section labels like [Verse] or [Chorus] unless specifically instructed.
Instead, write lyrics that flow naturally and match the music's rhythm precisely.
Your lyrics:
"""
# Format as a chat message for the LLM
messages = [
{"role": "user", "content": content}
]
# Apply chat template with thinking enabled
try:
# Try using the model-specific template with thinking enabled
text = llm_tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True # Only works with models that support thinking mode
)
except Exception as e:
# Fallback to standard template if thinking mode not supported
print(f"Thinking mode not supported, using standard template: {str(e)}")
text = llm_tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Generate lyrics using the LLM
model_inputs = llm_tokenizer([text], return_tensors="pt").to(llm_model.device)
# Configure generation parameters based on model capability
generation_params = {
"do_sample": True,
"temperature": 0.6, # Lower for more consistent rhythm alignment
"top_p": 0.95,
"top_k": 20,
"repetition_penalty": 1.2,
"max_new_tokens": 1024 # Allow more tokens for comprehensive lyrics
}
# Generate output
generated_ids = llm_model.generate(
**model_inputs,
**generation_params
)
# Extract output tokens
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# Try to find </think> token to separate thinking from final answer if the model supports it
try:
# Look for thinking mode tokens - check model-specific token IDs
# For Qwen3, the </think> token ID is 151668
think_end_tokens = {
"qwen": 151668, # Qwen </think> token
"claude": 42, # Example for Claude (placeholder)
"llama": 128001 # Example for Llama (placeholder)
}
# Try to find a known token
found_token = None
token_position = 0
for model_name, token_id in think_end_tokens.items():
if token_id in output_ids:
found_token = token_id
token_position = len(output_ids) - output_ids[::-1].index(token_id)
break
# Use the position of the thinking token if found
if found_token:
lyrics = llm_tokenizer.decode(output_ids[token_position:], skip_special_tokens=True).strip()
else:
lyrics = llm_tokenizer.decode(output_ids, skip_special_tokens=True).strip()
except (ValueError, IndexError, AttributeError) as e:
print(f"Error processing thinking output: {str(e)}")
# Default behavior if thinking mode processing fails
lyrics = llm_tokenizer.decode(output_ids, skip_special_tokens=True).strip()
# Verify syllable counts with enhanced verification
if templates_for_verification:
verified_lyrics = verify_flexible_syllable_counts(lyrics, templates_for_verification)
# Check if significant issues were detected
if "[Note: Potential rhythm mismatches" in verified_lyrics and "Detailed Alignment Analysis" in verified_lyrics:
# Extract the original lyrics (before the notes section)
original_lyrics = lyrics.split("[Note:")[0].strip()
# Extract the analysis
analysis = verified_lyrics.split("[Note:")[1]
# If we have serious alignment issues, consider a refinement step
if "stress misalignments" in analysis and len(templates_for_verification) > 0:
# Add a refinement prompt with the specific analysis
refinement_prompt = f"""
You need to fix rhythm issues in these lyrics. Here's the analysis of the problems:
{analysis}
Revise the lyrics to perfectly match the rhythm pattern while maintaining the theme.
Focus on fixing the stress misalignments by placing stressed syllables on STRONG beats.
Original lyrics:
{original_lyrics}
Improved lyrics with fixed rhythm:
"""
# Format as a chat message for refinement
refinement_messages = [
{"role": "user", "content": refinement_prompt}
]
# Use standard template for refinement (no thinking mode needed)
refinement_text = llm_tokenizer.apply_chat_template(
refinement_messages,
tokenize=False,
add_generation_prompt=True
)
try:
# Generate refined lyrics with more focus on rhythm alignment
refinement_inputs = llm_tokenizer([refinement_text], return_tensors="pt").to(llm_model.device)
# Use stricter parameters for refinement
refinement_params = {
"do_sample": True,
"temperature": 0.4, # Lower temperature for more precise refinement
"top_p": 0.9,
"repetition_penalty": 1.3,
"max_new_tokens": 1024
}
refined_ids = llm_model.generate(
**refinement_inputs,
**refinement_params
)
# Extract refined lyrics
refined_output_ids = refined_ids[0][len(refinement_inputs.input_ids[0]):].tolist()
refined_lyrics = llm_tokenizer.decode(refined_output_ids, skip_special_tokens=True).strip()
# Verify the refined lyrics
refined_verified_lyrics = verify_flexible_syllable_counts(refined_lyrics, templates_for_verification)
# Only use refined lyrics if they're better (fewer notes)
if "[Note: Potential rhythm mismatches" not in refined_verified_lyrics:
lyrics = refined_lyrics
elif refined_verified_lyrics.count("misalignments") < verified_lyrics.count("misalignments"):
lyrics = refined_verified_lyrics
else:
lyrics = verified_lyrics
except Exception as e:
print(f"Error in lyrics refinement: {str(e)}")
lyrics = verified_lyrics
else:
# Minor issues, just use the verification notes
lyrics = verified_lyrics
else:
# No significant issues detected
lyrics = verified_lyrics
# Add section labels if they're not present and we're using the traditional approach
if use_sections and "Verse" not in lyrics and "Chorus" not in lyrics:
lines = lyrics.split('\n')
formatted_lyrics = []
line_count = 0
for i, line in enumerate(lines):
if not line.strip():
formatted_lyrics.append(line)
continue
if line_count == 0:
formatted_lyrics.append("[Verse]")
elif line_count == verse_lines:
formatted_lyrics.append("\n[Chorus]")
elif line_count == verse_lines + chorus_lines and bridge_lines > 0:
formatted_lyrics.append("\n[Bridge]")
formatted_lyrics.append(line)
line_count += 1
lyrics = '\n'.join(formatted_lyrics)
# Clean up the output if there are analytical notes
if "[Note: Potential rhythm mismatches" in lyrics and "[How to fix rhythm mismatches" in lyrics:
# Optionally separate the analysis from the final lyrics for cleaner display
clean_lyrics = lyrics.split("[Note:")[0].strip()
analysis_notes = lyrics.split("[Note:")[1]
# For now, keep the full output with notes for debugging
# In a production system, you might want to handle this differently
lyrics = lyrics
return lyrics
def process_audio(audio_file):
"""Main function to process audio file, classify genre, and generate lyrics with enhanced rhythm analysis."""
if audio_file is None:
return "Please upload an audio file.", None, None
try:
print("Step 1/5: Extracting audio features...")
# Extract audio features
audio_data = extract_audio_features(audio_file)
print("Step 2/5: Verifying audio contains music...")
# First check if it's music
try:
is_music, ast_results = detect_music(audio_data)
except Exception as e:
print(f"Error in music detection: {str(e)}")
return f"Error in music detection: {str(e)}", None, ast_results
if not is_music:
return "The uploaded audio does not appear to be music. Please upload a music file.", None, ast_results
print("Step 3/5: Classifying music genre...")
# Classify genre
try:
top_genres = classify_genre(audio_data)
# Format genre results using utility function
genre_results = format_genre_results(top_genres)
except Exception as e:
print(f"Error in genre classification: {str(e)}")
return f"Error in genre classification: {str(e)}", None, ast_results
print("Step 4/5: Analyzing music emotions, themes, and structure...")
# Analyze music emotions and themes
try:
emotion_results = music_analyzer.analyze_music(audio_file)
except Exception as e:
print(f"Error in emotion analysis: {str(e)}")
# Continue even if emotion analysis fails
emotion_results = {
"emotion_analysis": {"primary_emotion": "Unknown"},
"theme_analysis": {"primary_theme": "Unknown"},
"rhythm_analysis": {"tempo": 0},
"tonal_analysis": {"key": "Unknown", "mode": ""},
"summary": {"tempo": 0, "key": "Unknown", "mode": "", "primary_emotion": "Unknown", "primary_theme": "Unknown"}
}
# Calculate detailed song structure for better lyrics alignment
try:
song_structure = calculate_detailed_song_structure(audio_data)
except Exception as e:
print(f"Error analyzing song structure: {str(e)}")
# Continue with a simpler approach if this fails
song_structure = None
print("Step 5/5: Generating rhythmically aligned lyrics...")
# Generate lyrics based on top genre, emotion analysis, and song structure
try:
primary_genre, _ = top_genres[0]
lyrics = generate_lyrics(primary_genre, audio_data["duration"], emotion_results, song_structure)
except Exception as e:
print(f"Error generating lyrics: {str(e)}")
lyrics = f"Error generating lyrics: {str(e)}"
# Prepare results dictionary with additional rhythm analysis
results = {
"genre_results": genre_results,
"lyrics": lyrics,
"ast_results": ast_results
}
# Extract rhythm analysis if present in the lyrics
if isinstance(lyrics, str) and "[Note: Potential rhythm mismatches" in lyrics:
clean_lyrics = lyrics.split("[Note:")[0].strip()
rhythm_analysis = "[Note:" + lyrics.split("[Note:")[1]
results["clean_lyrics"] = clean_lyrics
results["rhythm_analysis"] = rhythm_analysis
return results
except Exception as e:
error_msg = f"Error processing audio: {str(e)}"
print(error_msg)
return error_msg, None, []
# Create enhanced Gradio interface with tabs for better organization
with gr.Blocks(title="Music Genre Classifier & Lyrics Generator") as demo:
gr.Markdown("# Music Genre Classifier & Lyrics Generator")
gr.Markdown("Upload a music file to classify its genre, analyze its emotions, and generate perfectly aligned lyrics.")
with gr.Row():
with gr.Column(scale=1):
audio_input = gr.Audio(label="Upload Music", type="filepath")
submit_btn = gr.Button("Analyze & Generate", variant="primary")
# Add genre info box
with gr.Accordion("About Music Genres", open=False):
gr.Markdown("""
The system recognizes various music genres including:
- Pop, Rock, Hip-Hop, R&B
- Electronic, Dance, Techno, House
- Jazz, Blues, Classical
- Folk, Country, Acoustic
- Metal, Punk, Alternative
- And many others!
For best results, use high-quality audio files (MP3, WAV, FLAC) with at least 10 seconds of music.
""")
with gr.Column(scale=2):
# Use tabs for better organization of outputs
with gr.Tabs():
with gr.TabItem("Analysis Results"):
genre_output = gr.Textbox(label="Detected Genres", lines=4)
# Create 2 columns for emotion and audio classification
with gr.Row():
with gr.Column():
emotion_output = gr.Textbox(label="Emotion & Structure Analysis", lines=8)
with gr.Column():
ast_output = gr.Textbox(label="Audio Classification", lines=8)
with gr.TabItem("Generated Lyrics"):
lyrics_output = gr.Textbox(label="Lyrics", lines=18)
with gr.TabItem("Rhythm Analysis"):
rhythm_analysis_output = gr.Textbox(label="Syllable-Beat Alignment Analysis", lines=16)
# Processing function with better handling of results
def display_results(audio_file):
if audio_file is None:
return "Please upload an audio file.", "No emotion analysis available.", "No audio classification available.", "No lyrics generated.", "No rhythm analysis available."
try:
# Process audio and get results
results = process_audio(audio_file)
# Check if we got an error message instead of results
if isinstance(results, str) and "Error" in results:
return results, "Error in analysis", "Error in classification", "No lyrics generated", "No rhythm analysis available"
elif isinstance(results, tuple) and isinstance(results[0], str) and "Error" in results[0]:
return results[0], "Error in analysis", "Error in classification", "No lyrics generated", "No rhythm analysis available"
# For backwards compatibility, handle both dictionary and tuple returns
if isinstance(results, dict):
genre_results = results.get("genre_results", "Genre classification failed")
lyrics = results.get("lyrics", "Lyrics generation failed")
ast_results = results.get("ast_results", [])
# Use clean lyrics if available
clean_lyrics = results.get("clean_lyrics", lyrics)
rhythm_analysis = results.get("rhythm_analysis", "No detailed rhythm analysis available")
else:
# Handle the old tuple return format
genre_results, lyrics, ast_results = results
clean_lyrics = lyrics
# Extract rhythm analysis if present
rhythm_analysis = "No detailed rhythm analysis available"
if isinstance(lyrics, str) and "[Note: Potential rhythm mismatches" in lyrics:
clean_lyrics = lyrics.split("[Note:")[0].strip()
rhythm_analysis = "[Note:" + lyrics.split("[Note:")[1]
# Format emotion analysis results
try:
emotion_results = music_analyzer.analyze_music(audio_file)
emotion_text = f"Tempo: {emotion_results['summary']['tempo']:.1f} BPM\n"
emotion_text += f"Key: {emotion_results['summary']['key']} {emotion_results['summary']['mode']}\n"
emotion_text += f"Primary Emotion: {emotion_results['summary']['primary_emotion']}\n"
emotion_text += f"Primary Theme: {emotion_results['summary']['primary_theme']}"
# Add detailed song structure information if available
try:
audio_data = extract_audio_features(audio_file)
song_structure = calculate_detailed_song_structure(audio_data)
emotion_text += "\n\nSong Structure:\n"
for section in song_structure["syllables"]:
emotion_text += f"- {section['type'].capitalize()}: {section['start']:.1f}s to {section['end']:.1f}s "
emotion_text += f"({section['duration']:.1f}s, {section['beat_count']} beats, "
if "syllable_template" in section:
emotion_text += f"template: {section['syllable_template']})\n"
else:
emotion_text += f"~{section['syllable_count']} syllables)\n"
# Add flexible structure info if available
if "flexible_structure" in song_structure and song_structure["flexible_structure"]:
flexible = song_structure["flexible_structure"]
if "segments" in flexible and flexible["segments"]:
emotion_text += "\nDetailed Rhythm Analysis:\n"
for i, segment in enumerate(flexible["segments"][:5]): # Show first 5 segments
emotion_text += f"- Segment {i+1}: {segment['start']:.1f}s to {segment['end']:.1f}s, "
emotion_text += f"pattern: {segment.get('syllable_template', 'N/A')}\n"
if len(flexible["segments"]) > 5:
emotion_text += f" (+ {len(flexible['segments']) - 5} more segments)\n"
except Exception as e:
print(f"Error displaying song structure: {str(e)}")
# Continue without showing structure details
except Exception as e:
print(f"Error in emotion analysis: {str(e)}")
emotion_text = f"Error in emotion analysis: {str(e)}"
# Format AST classification results
if ast_results and isinstance(ast_results, list):
ast_text = "Audio Classification Results:\n"
for result in ast_results[:5]: # Show top 5 results
ast_text += f"{result['label']}: {result['score']*100:.2f}%\n"
else:
ast_text = "No valid audio classification results available."
# Return all results for the tabbed interface
return genre_results, emotion_text, ast_text, clean_lyrics, rhythm_analysis
except Exception as e:
error_msg = f"Error: {str(e)}"
print(error_msg)
return error_msg, "Error in emotion analysis", "Error in audio classification", "No lyrics generated", "No rhythm analysis available"
# Connect the button to the display function
submit_btn.click(
fn=display_results,
inputs=[audio_input],
outputs=[genre_output, emotion_output, ast_output, lyrics_output, rhythm_analysis_output]
)
# Enhanced explanation of how the system works
with gr.Accordion("How it works", open=False):
gr.Markdown("""
## Advanced Lyrics Generation Process
1. **Audio Analysis**: The system analyzes your uploaded music file using multiple machine learning models.
2. **Genre Classification**: A specialized neural network identifies the musical genre, detecting subtle patterns in the audio.
3. **Emotional Analysis**: The system examines harmonic, rhythmic, and timbral features to determine the emotional qualities of the music.
4. **Rhythm Mapping**: Advanced beat detection algorithms create a detailed rhythmic map of the music, identifying:
- Strong and weak beats
- Natural phrase boundaries
- Time signature and tempo variations
5. **Syllable Template Creation**: For each musical phrase, the system generates precise syllable templates that reflect:
- Beat stress patterns (strong, medium, weak)
- Appropriate syllable counts based on tempo
- Genre-specific rhythmic qualities
6. **Lyrics Generation**: Using the detected genre, emotion, and rhythm patterns, a large language model generates lyrics that:
- Match the emotional quality of the music
- Follow the precise syllable templates
- Align stressed syllables with strong beats
- Maintain genre-appropriate style and themes
7. **Rhythm Verification**: The system verifies the generated lyrics, analyzing:
- Syllable count accuracy
- Stress alignment with strong beats
- Word stress patterns
8. **Refinement**: If significant rhythm mismatches are detected, the system can automatically refine the lyrics for better alignment.
This multi-step process creates lyrics that feel naturally connected to the music, as if they were written specifically for it.
""")
# Launch the app
demo.launch()