File size: 20,509 Bytes
9e21eef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 |
import librosa
import numpy as np
try:
import matplotlib.pyplot as plt
except ImportError:
plt = None
from scipy.stats import mode
import warnings
warnings.filterwarnings('ignore') # Suppress librosa warnings
class MusicAnalyzer:
def __init__(self):
# Emotion feature mappings - these define characteristics of different emotions
self.emotion_profiles = {
'happy': {'tempo': (100, 180), 'energy': (0.6, 1.0), 'major_mode': True, 'brightness': (0.6, 1.0)},
'sad': {'tempo': (40, 90), 'energy': (0, 0.5), 'major_mode': False, 'brightness': (0, 0.5)},
'calm': {'tempo': (50, 90), 'energy': (0, 0.4), 'major_mode': True, 'brightness': (0.3, 0.6)},
'energetic': {'tempo': (110, 200), 'energy': (0.7, 1.0), 'major_mode': True, 'brightness': (0.5, 0.9)},
'tense': {'tempo': (70, 140), 'energy': (0.5, 0.9), 'major_mode': False, 'brightness': (0.3, 0.7)},
'nostalgic': {'tempo': (60, 100), 'energy': (0.3, 0.7), 'major_mode': None, 'brightness': (0.4, 0.7)}
}
# Theme mappings based on musical features
self.theme_profiles = {
'love': {'emotion': ['happy', 'nostalgic', 'sad'], 'harmony_complexity': (0.3, 0.7)},
'triumph': {'emotion': ['energetic', 'happy'], 'harmony_complexity': (0.4, 0.8)},
'loss': {'emotion': ['sad', 'nostalgic'], 'harmony_complexity': (0.3, 0.7)},
'adventure': {'emotion': ['energetic', 'tense'], 'harmony_complexity': (0.5, 0.9)},
'reflection': {'emotion': ['calm', 'nostalgic'], 'harmony_complexity': (0.4, 0.8)},
'conflict': {'emotion': ['tense', 'energetic'], 'harmony_complexity': (0.6, 1.0)}
}
# Musical key mapping
self.key_names = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B']
def load_audio(self, file_path, sr=22050, duration=None):
"""Load audio file and return time series and sample rate"""
try:
y, sr = librosa.load(file_path, sr=sr, duration=duration)
return y, sr
except Exception as e:
print(f"Error loading audio file: {e}")
return None, None
def analyze_rhythm(self, y, sr):
"""Analyze rhythm-related features: tempo, beats, time signature"""
# Tempo and beat detection
onset_env = librosa.onset.onset_strength(y=y, sr=sr)
tempo, beat_frames = librosa.beat.beat_track(onset_envelope=onset_env, sr=sr)
beat_times = librosa.frames_to_time(beat_frames, sr=sr)
# Beat intervals and regularity
beat_intervals = np.diff(beat_times) if len(beat_times) > 1 else np.array([0])
beat_regularity = 1.0 / np.std(beat_intervals) if len(beat_intervals) > 0 and np.std(beat_intervals) > 0 else 0
# Rhythm pattern analysis through autocorrelation
ac = librosa.autocorrelate(onset_env, max_size=sr // 2)
ac = librosa.util.normalize(ac, norm=np.inf)
# Time signature estimation - a challenging task with many limitations
estimated_signature = self._estimate_time_signature(y, sr, beat_times, onset_env)
# Compute onset strength to get a measure of rhythm intensity
rhythm_intensity = np.mean(onset_env) / np.max(onset_env) if np.max(onset_env) > 0 else 0
# Rhythm complexity based on variation in onset strength
rhythm_complexity = np.std(onset_env) / np.mean(onset_env) if np.mean(onset_env) > 0 else 0
return {
"tempo": float(tempo),
"beat_times": beat_times.tolist(),
"beat_intervals": beat_intervals.tolist(),
"beat_regularity": float(beat_regularity),
"rhythm_intensity": float(rhythm_intensity),
"rhythm_complexity": float(rhythm_complexity),
"estimated_time_signature": estimated_signature
}
def _estimate_time_signature(self, y, sr, beat_times, onset_env):
"""Estimate the time signature based on beat patterns"""
# This is a simplified approach - accurate time signature detection is complex
if len(beat_times) < 4:
return "Unknown"
# Analyze beat emphasis patterns to detect meter
beat_intervals = np.diff(beat_times)
# Look for periodicity in the onset envelope
ac = librosa.autocorrelate(onset_env, max_size=sr)
# Find peaks in autocorrelation after the first one (which is at lag 0)
peaks = librosa.util.peak_pick(ac, pre_max=20, post_max=20, pre_avg=20, post_avg=20, delta=0.1, wait=1)
peaks = peaks[peaks > 0] # Remove the first peak which is at lag 0
if len(peaks) == 0:
return "4/4" # Default to most common
# Convert first significant peak to beats
first_peak_time = peaks[0] / sr
beats_per_bar = round(first_peak_time / np.median(beat_intervals))
# Map to common time signatures
if beats_per_bar == 4 or beats_per_bar == 8:
return "4/4"
elif beats_per_bar == 3 or beats_per_bar == 6:
return "3/4"
elif beats_per_bar == 2:
return "2/4"
else:
return f"{beats_per_bar}/4" # Default assumption
def analyze_tonality(self, y, sr):
"""Analyze tonal features: key, mode, harmonic features"""
# Compute chromagram
chroma = librosa.feature.chroma_cqt(y=y, sr=sr)
# Krumhansl-Schmuckler key-finding algorithm (simplified)
# Major and minor profiles from music theory research
major_profile = np.array([6.35, 2.23, 3.48, 2.33, 4.38, 4.09, 2.52, 5.19, 2.39, 3.66, 2.29, 2.88])
minor_profile = np.array([6.33, 2.68, 3.52, 5.38, 2.60, 3.53, 2.54, 4.75, 3.98, 2.69, 3.34, 3.17])
# Calculate the correlation of the chroma with each key profile
chroma_avg = np.mean(chroma, axis=1)
major_corr = np.zeros(12)
minor_corr = np.zeros(12)
for i in range(12):
major_corr[i] = np.corrcoef(np.roll(chroma_avg, i), major_profile)[0, 1]
minor_corr[i] = np.corrcoef(np.roll(chroma_avg, i), minor_profile)[0, 1]
# Find the key with the highest correlation
max_major_idx = np.argmax(major_corr)
max_minor_idx = np.argmax(minor_corr)
# Determine if the piece is in a major or minor key
if major_corr[max_major_idx] > minor_corr[max_minor_idx]:
mode = "major"
key = self.key_names[max_major_idx]
else:
mode = "minor"
key = self.key_names[max_minor_idx]
# Calculate harmony complexity (variability in harmonic content)
harmony_complexity = np.std(chroma) / np.mean(chroma) if np.mean(chroma) > 0 else 0
# Calculate tonal stability (consistency of tonal center)
tonal_stability = 1.0 / (np.std(chroma_avg) + 0.001) # Add small value to avoid division by zero
# Calculate spectral brightness (center of mass of the spectrum)
spectral_centroid = librosa.feature.spectral_centroid(y=y, sr=sr)[0]
brightness = np.mean(spectral_centroid) / (sr/2) # Normalize by Nyquist frequency
# Calculate dissonance using spectral contrast
spectral_contrast = librosa.feature.spectral_contrast(y=y, sr=sr)
dissonance = np.mean(spectral_contrast[0]) # Higher values may indicate more dissonance
return {
"key": key,
"mode": mode,
"is_major": mode == "major",
"harmony_complexity": float(harmony_complexity),
"tonal_stability": float(tonal_stability),
"brightness": float(brightness),
"dissonance": float(dissonance)
}
def analyze_energy(self, y, sr):
"""Analyze energy characteristics of the audio"""
# RMS Energy (overall loudness)
rms = librosa.feature.rms(y=y)[0]
# Energy metrics
mean_energy = np.mean(rms)
energy_std = np.std(rms)
energy_dynamic_range = np.max(rms) - np.min(rms) if len(rms) > 0 else 0
# Energy distribution across frequency ranges
spec = np.abs(librosa.stft(y))
# Divide the spectrum into low, mid, and high ranges
freq_bins = spec.shape[0]
low_freq_energy = np.mean(spec[:int(freq_bins*0.2), :])
mid_freq_energy = np.mean(spec[int(freq_bins*0.2):int(freq_bins*0.8), :])
high_freq_energy = np.mean(spec[int(freq_bins*0.8):, :])
# Normalize to create a distribution
total_energy = low_freq_energy + mid_freq_energy + high_freq_energy
if total_energy > 0:
low_freq_ratio = low_freq_energy / total_energy
mid_freq_ratio = mid_freq_energy / total_energy
high_freq_ratio = high_freq_energy / total_energy
else:
low_freq_ratio = mid_freq_ratio = high_freq_ratio = 1/3
return {
"mean_energy": float(mean_energy),
"energy_std": float(energy_std),
"energy_dynamic_range": float(energy_dynamic_range),
"frequency_distribution": {
"low_freq": float(low_freq_ratio),
"mid_freq": float(mid_freq_ratio),
"high_freq": float(high_freq_ratio)
}
}
def analyze_emotion(self, rhythm_data, tonal_data, energy_data):
"""Classify the emotion based on musical features"""
# Extract key features for emotion detection
tempo = rhythm_data["tempo"]
is_major = tonal_data["is_major"]
energy = energy_data["mean_energy"]
brightness = tonal_data["brightness"]
# Calculate scores for each emotion
emotion_scores = {}
for emotion, profile in self.emotion_profiles.items():
score = 0.0
# Tempo contribution (0-1 score)
tempo_range = profile["tempo"]
if tempo_range[0] <= tempo <= tempo_range[1]:
score += 1.0
else:
# Partial score based on distance
distance = min(abs(tempo - tempo_range[0]), abs(tempo - tempo_range[1]))
max_distance = 40 # Maximum distance to consider
score += max(0, 1 - (distance / max_distance))
# Energy contribution (0-1 score)
energy_range = profile["energy"]
if energy_range[0] <= energy <= energy_range[1]:
score += 1.0
else:
# Partial score based on distance
distance = min(abs(energy - energy_range[0]), abs(energy - energy_range[1]))
max_distance = 0.5 # Maximum distance to consider
score += max(0, 1 - (distance / max_distance))
# Mode contribution (0-1 score)
if profile["major_mode"] is not None: # Some emotions don't have strong mode preference
score += 1.0 if profile["major_mode"] == is_major else 0.0
else:
score += 0.5 # Neutral contribution
# Brightness contribution (0-1 score)
brightness_range = profile["brightness"]
if brightness_range[0] <= brightness <= brightness_range[1]:
score += 1.0
else:
# Partial score based on distance
distance = min(abs(brightness - brightness_range[0]), abs(brightness - brightness_range[1]))
max_distance = 0.5 # Maximum distance to consider
score += max(0, 1 - (distance / max_distance))
# Normalize score (0-1 range)
emotion_scores[emotion] = score / 4.0
# Find primary emotion
primary_emotion = max(emotion_scores.items(), key=lambda x: x[1])
# Calculate valence and arousal (dimensional emotion model)
# Mapping different emotions to valence-arousal space
valence_map = {
'happy': 0.8, 'sad': 0.2, 'calm': 0.6,
'energetic': 0.7, 'tense': 0.3, 'nostalgic': 0.5
}
arousal_map = {
'happy': 0.7, 'sad': 0.3, 'calm': 0.2,
'energetic': 0.9, 'tense': 0.8, 'nostalgic': 0.4
}
# Calculate weighted valence and arousal
total_weight = sum(emotion_scores.values())
if total_weight > 0:
valence = sum(score * valence_map[emotion] for emotion, score in emotion_scores.items()) / total_weight
arousal = sum(score * arousal_map[emotion] for emotion, score in emotion_scores.items()) / total_weight
else:
valence = 0.5
arousal = 0.5
return {
"primary_emotion": primary_emotion[0],
"confidence": primary_emotion[1],
"emotion_scores": emotion_scores,
"valence": float(valence), # Pleasure dimension (0-1)
"arousal": float(arousal) # Activity dimension (0-1)
}
def analyze_theme(self, rhythm_data, tonal_data, emotion_data):
"""Infer potential themes based on musical features and emotion"""
# Extract relevant features
primary_emotion = emotion_data["primary_emotion"]
harmony_complexity = tonal_data["harmony_complexity"]
# Calculate theme scores
theme_scores = {}
for theme, profile in self.theme_profiles.items():
score = 0.0
# Emotion contribution
if primary_emotion in profile["emotion"]:
# Emotions listed earlier have stronger connection to the theme
position_weight = 1.0 / (profile["emotion"].index(primary_emotion) + 1)
score += position_weight
# Secondary emotions contribution
secondary_emotions = [e for e, s in emotion_data["emotion_scores"].items()
if s > 0.5 and e != primary_emotion]
for emotion in secondary_emotions:
if emotion in profile["emotion"]:
score += 0.3 # Less weight than primary emotion
# Harmony complexity contribution
complexity_range = profile["harmony_complexity"]
if complexity_range[0] <= harmony_complexity <= complexity_range[1]:
score += 1.0
else:
# Partial score based on distance
distance = min(abs(harmony_complexity - complexity_range[0]),
abs(harmony_complexity - complexity_range[1]))
max_distance = 0.5 # Maximum distance to consider
score += max(0, 1 - (distance / max_distance))
# Normalize score
theme_scores[theme] = min(1.0, score / 2.5)
# Find primary theme
primary_theme = max(theme_scores.items(), key=lambda x: x[1])
# Find secondary themes (scores > 0.5)
secondary_themes = [(theme, score) for theme, score in theme_scores.items()
if score > 0.5 and theme != primary_theme[0]]
secondary_themes.sort(key=lambda x: x[1], reverse=True)
return {
"primary_theme": primary_theme[0],
"confidence": primary_theme[1],
"secondary_themes": [t[0] for t in secondary_themes[:2]], # Top 2 secondary themes
"theme_scores": theme_scores
}
def analyze_music(self, file_path):
"""Main function to perform comprehensive music analysis"""
# Load the audio file
y, sr = self.load_audio(file_path)
if y is None:
return {"error": "Failed to load audio file"}
# Run all analyses
rhythm_data = self.analyze_rhythm(y, sr)
tonal_data = self.analyze_tonality(y, sr)
energy_data = self.analyze_energy(y, sr)
# Higher-level analyses that depend on the basic features
emotion_data = self.analyze_emotion(rhythm_data, tonal_data, energy_data)
theme_data = self.analyze_theme(rhythm_data, tonal_data, emotion_data)
# Combine all results
return {
"file": file_path,
"rhythm_analysis": rhythm_data,
"tonal_analysis": tonal_data,
"energy_analysis": energy_data,
"emotion_analysis": emotion_data,
"theme_analysis": theme_data,
"summary": {
"tempo": rhythm_data["tempo"],
"time_signature": rhythm_data["estimated_time_signature"],
"key": tonal_data["key"],
"mode": tonal_data["mode"],
"primary_emotion": emotion_data["primary_emotion"],
"primary_theme": theme_data["primary_theme"]
}
}
# def visualize_analysis(self, file_path):
# """Create visualizations for the music analysis results"""
# # Check if matplotlib is available
# if plt is None:
# print("Error: matplotlib is not installed. Visualization is not available.")
# return
#
# # Load audio and run analysis
# y, sr = self.load_audio(file_path)
# if y is None:
# print("Error: Failed to load audio file")
# return
#
# results = self.analyze_music(file_path)
#
# # Create visualization
# plt.figure(figsize=(15, 12))
# # Waveform
# plt.subplot(3, 2, 1)
# librosa.display.waveshow(y, sr=sr, alpha=0.6)
# plt.title(f'Waveform (Tempo: {results["rhythm_analysis"]["tempo"]:.1f} BPM)')
# # Spectrogram
# plt.subplot(3, 2, 2)
# D = librosa.amplitude_to_db(np.abs(librosa.stft(y)), ref=np.max)
# librosa.display.specshow(D, sr=sr, x_axis='time', y_axis='log')
# plt.colorbar(format='%+2.0f dB')
# plt.title(f'Spectrogram (Key: {results["tonal_analysis"]["key"]} {results["tonal_analysis"]["mode"]})')
# # Chromagram
# plt.subplot(3, 2, 3)
# chroma = librosa.feature.chroma_cqt(y=y, sr=sr)
# librosa.display.specshow(chroma, y_axis='chroma', x_axis='time')
# plt.colorbar()
# plt.title('Chromagram')
# # Onset strength and beats
# plt.subplot(3, 2, 4)
# onset_env = librosa.onset.onset_strength(y=y, sr=sr)
# times = librosa.times_like(onset_env, sr=sr)
# plt.plot(times, librosa.util.normalize(onset_env), label='Onset strength')
# plt.vlines(results["rhythm_analysis"]["beat_times"], 0, 1, alpha=0.5, color='r',
# linestyle='--', label='Beats')
# plt.legend()
# plt.title('Rhythm Analysis')
# # Emotion scores
# plt.subplot(3, 2, 5)
# emotions = list(results["emotion_analysis"]["emotion_scores"].keys())
# scores = list(results["emotion_analysis"]["emotion_scores"].values())
# plt.bar(emotions, scores, color='skyblue')
# plt.ylim(0, 1)
# plt.title(f'Emotion Analysis (Primary: {results["emotion_analysis"]["primary_emotion"]})')
# plt.xticks(rotation=45)
# # Theme scores
# plt.subplot(3, 2, 6)
# themes = list(results["theme_analysis"]["theme_scores"].keys())
# scores = list(results["theme_analysis"]["theme_scores"].values())
# plt.bar(themes, scores, color='lightgreen')
# plt.ylim(0, 1)
# plt.title(f'Theme Analysis (Primary: {results["theme_analysis"]["primary_theme"]})')
# plt.xticks(rotation=45)
# plt.tight_layout()
# plt.show()
# Create an instance of the analyzer
analyzer = MusicAnalyzer()
# The following code is for demonstration purposes only
# and will only run if executed directly (not when imported)
if __name__ == "__main__":
# Replace this with a real audio file path when running as a script
demo_file = "path/to/your/audio/file.mp3"
# Analyze the uploaded audio file
results = analyzer.analyze_music(demo_file)
# Print analysis summary
print("\n=== MUSIC ANALYSIS SUMMARY ===")
print(f"Tempo: {results['summary']['tempo']:.1f} BPM")
print(f"Time Signature: {results['summary']['time_signature']}")
print(f"Key: {results['summary']['key']} {results['summary']['mode']}")
print(f"Primary Emotion: {results['summary']['primary_emotion']}")
print(f"Primary Theme: {results['summary']['primary_theme']}")
# Show detailed results (optional)
import json
print("\n=== DETAILED ANALYSIS ===")
print(json.dumps(results, indent=2))
# Visualize the analysis
# analyzer.visualize_analysis(demo_file) |