fyp_start_space / app.py
root
...
a23fb29
raw
history blame
13.1 kB
import requests
import gradio as gr
import os
import torch
import json
import time
import tempfile
import shutil
import librosa
from transformers import AutoTokenizer, AutoModelForCausalLM
# Check if CUDA is available and set the device accordingly
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# API URLs and headers
AUDIO_API_URL = "https://api-inference.huggingface.co/models/MIT/ast-finetuned-audioset-10-10-0.4593"
LYRICS_API_URL = "https://api-inference.huggingface.co/models/gpt2-medium"
headers = {"Authorization": f"Bearer {os.environ.get('HF_TOKEN')}"}
def get_audio_duration(audio_path):
"""Get the duration of the audio file in seconds"""
try:
duration = librosa.get_duration(path=audio_path)
return duration
except Exception as e:
print(f"Error getting audio duration: {e}")
return None
def calculate_song_structure(duration):
"""Calculate song structure based on audio duration"""
if duration is None:
return {"verses": 2, "choruses": 1, "tokens": 200} # Default structure
# Basic rules for song structure:
# - Short clips (< 30s): 1 verse, 1 chorus
# - Medium clips (30s-2min): 2 verses, 1-2 choruses
# - Longer clips (>2min): 3 verses, 2-3 choruses
if duration < 30:
return {
"verses": 1,
"choruses": 1,
"tokens": 150
}
elif duration < 120:
return {
"verses": 2,
"choruses": 2,
"tokens": 200
}
else:
return {
"verses": 3,
"choruses": 3,
"tokens": 300
}
def create_lyrics_prompt(classification_results, song_structure):
"""Create a prompt for lyrics generation based on classification results and desired structure"""
# Get the top genres and characteristics
main_style = classification_results[0]['label']
secondary_elements = [result['label'] for result in classification_results[1:3]]
# Create a more specific prompt with example structure and style guidance
prompt = f"""Create {song_structure['verses']} verses and {song_structure['choruses']} choruses in {main_style} style with {', '.join(secondary_elements)} elements.
[Verse 1]"""
return prompt
def format_lyrics(generated_text, song_structure):
"""Format the generated lyrics according to desired structure"""
lines = []
verse_count = 0
chorus_count = 0
current_section = []
# Split text into lines and process
text_lines = generated_text.split('\n')
for line in text_lines:
line = line.strip()
# Skip empty lines and metadata
if not line or line.startswith('```') or line.startswith('###'):
continue
# Handle section markers
if '[verse' in line.lower() or '[chorus' in line.lower():
# Save previous section if it exists
if current_section:
# Pad section to 4 lines if needed
while len(current_section) < 4:
current_section.append("...")
lines.extend(current_section[:4])
current_section = []
# Add new section marker
if '[verse' in line.lower() and verse_count < song_structure['verses']:
verse_count += 1
lines.append(f"\n[Verse {verse_count}]")
elif '[chorus' in line.lower() and chorus_count < song_structure['choruses']:
chorus_count += 1
lines.append(f"\n[Chorus {chorus_count}]")
else:
# Add line to current section if it looks like lyrics
if len(line.split()) <= 12 and not line[0] in '.,!?':
current_section.append(line)
# Handle last section
if current_section:
while len(current_section) < 4:
current_section.append("...")
lines.extend(current_section[:4])
# Add any missing sections
while verse_count < song_structure['verses'] or chorus_count < song_structure['choruses']:
if verse_count < song_structure['verses']:
verse_count += 1
lines.append(f"\n[Verse {verse_count}]")
lines.extend(["..." for _ in range(4)])
if chorus_count < song_structure['choruses']:
chorus_count += 1
lines.append(f"\n[Chorus {chorus_count}]")
lines.extend(["..." for _ in range(4)])
return "\n".join(lines)
def create_default_lyrics(song_structure):
"""Create default lyrics when generation fails"""
lyrics = []
# Add verses
for i in range(song_structure['verses']):
lyrics.append(f"\n[Verse {i+1}]")
lyrics.extend([
"Through the gentle evening light",
"Melodies take wings in flight",
"Every note a story tells",
"Like the sound of silver bells"
])
# Add choruses
for i in range(song_structure['choruses']):
lyrics.append(f"\n[Chorus {i+1}]")
lyrics.extend([
"Let the music fill the air",
"Feel the rhythm everywhere",
"Time stands still as we all sing",
"Joy and wonder it will bring"
])
return "\n".join(lyrics)
def generate_lyrics_with_retry(prompt, song_structure, max_retries=5, initial_wait=2):
"""Generate lyrics using GPT2 with improved retry logic and error handling"""
wait_time = initial_wait
for attempt in range(max_retries):
try:
print(f"\nAttempt {attempt + 1}: Generating lyrics...")
response = requests.post(
LYRICS_API_URL,
headers=headers,
json={
"inputs": prompt,
"parameters": {
"max_new_tokens": song_structure['tokens'],
"temperature": 0.8,
"top_p": 0.9,
"do_sample": True,
"return_full_text": True,
"num_return_sequences": 1,
"repetition_penalty": 1.1
}
}
)
if response.status_code == 200:
result = response.json()
# Handle different response formats
if isinstance(result, list):
generated_text = result[0].get('generated_text', '')
elif isinstance(result, dict):
generated_text = result.get('generated_text', '')
else:
generated_text = str(result)
if not generated_text:
print("Empty response received, retrying...")
time.sleep(wait_time)
continue
# Process the generated text into verses and chorus
formatted_lyrics = format_lyrics(generated_text, song_structure)
# Verify we have enough content
if formatted_lyrics.count('[Verse') >= song_structure['verses'] and \
formatted_lyrics.count('[Chorus') >= song_structure['choruses']:
return formatted_lyrics
else:
print("Not enough sections generated, retrying...")
elif response.status_code == 503:
print(f"Model loading, waiting {wait_time} seconds...")
time.sleep(wait_time)
wait_time *= 1.5
continue
else:
print(f"Error response: {response.text}")
if attempt < max_retries - 1:
time.sleep(wait_time)
continue
except Exception as e:
print(f"Exception during generation: {str(e)}")
if attempt < max_retries - 1:
time.sleep(wait_time)
wait_time *= 1.5
continue
time.sleep(wait_time)
wait_time = min(wait_time * 1.5, 10) # Cap maximum wait time at 10 seconds
# If we failed to generate after all retries, return a default structure
return create_default_lyrics(song_structure)
def format_results(classification_results, lyrics, prompt):
"""Format the results for display"""
# Format classification results
classification_text = "Classification Results:\n"
for i, result in enumerate(classification_results):
classification_text += f"{i+1}. {result['label']}: {result['score']}\n"
# Format final output
output = f"""
{classification_text}
\n---Generated Lyrics---\n
{lyrics}
"""
return output
def classify_with_retry(data, max_retries=5, initial_wait=2):
"""Classify audio with retry logic for 503 errors"""
wait_time = initial_wait
for attempt in range(max_retries):
try:
print(f"\nAttempt {attempt + 1}: Classifying audio...")
response = requests.post(AUDIO_API_URL, headers=headers, data=data)
if response.status_code == 200:
return response.json()
elif response.status_code == 503:
print(f"Model loading, waiting {wait_time} seconds...")
time.sleep(wait_time)
wait_time *= 1.5
continue
else:
print(f"Error response: {response.text}")
if attempt < max_retries - 1:
time.sleep(wait_time)
continue
return None
except Exception as e:
print(f"Exception during classification: {str(e)}")
if attempt < max_retries - 1:
time.sleep(wait_time)
wait_time *= 1.5
continue
return None
time.sleep(wait_time)
wait_time = min(wait_time * 1.5, 10)
return None
def classify_and_generate(audio_file):
"""
Classify the audio and generate matching lyrics
"""
if audio_file is None:
return "Please upload an audio file."
try:
token = os.environ.get('HF_TOKEN')
if not token:
return "Error: HF_TOKEN environment variable is not set. Please set your Hugging Face API token."
# Get audio duration and calculate structure
if isinstance(audio_file, tuple):
audio_path = audio_file[0]
else:
audio_path = audio_file
duration = get_audio_duration(audio_path)
song_structure = calculate_song_structure(duration)
print(f"Audio duration: {duration:.2f}s, Structure: {song_structure}")
# Create a temporary file to handle the audio data
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp3') as temp_audio:
# Copy the audio file to our temporary file
shutil.copy2(audio_path, temp_audio.name)
# Read the temporary file
with open(temp_audio.name, "rb") as f:
data = f.read()
print("Sending request to Audio Classification API...")
classification_results = classify_with_retry(data)
# Clean up the temporary file
try:
os.unlink(temp_audio.name)
except:
pass
if classification_results is None:
return "Error: Failed to classify audio after multiple retries. Please try again."
# Format classification results
formatted_results = []
for result in classification_results:
formatted_results.append({
'label': result['label'],
'score': f"{result['score']*100:.2f}%"
})
# Generate lyrics based on classification with retry logic
print("Generating lyrics based on classification...")
prompt = create_lyrics_prompt(formatted_results, song_structure)
lyrics = generate_lyrics_with_retry(prompt, song_structure)
# Format and return results
return format_results(formatted_results, lyrics, prompt)
except Exception as e:
import traceback
error_details = traceback.format_exc()
return f"Error processing request: {str(e)}\nDetails:\n{error_details}"
# Create Gradio interface
iface = gr.Interface(
fn=classify_and_generate,
inputs=gr.Audio(type="filepath", label="Upload Audio File"),
outputs=gr.Textbox(
label="Results",
lines=15,
placeholder="Upload an audio file to see classification results and generated lyrics..."
),
title="Music Genre Classifier + Lyric Generator",
description="Upload an audio file to classify its genre and generate matching lyrics using AI.",
examples=[],
)
# Launch the interface
if __name__ == "__main__":
iface.launch(server_name="0.0.0.0", server_port=7860)