j-hartmann commited on
Commit
cbf355e
·
1 Parent(s): f1b26d2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -8
app.py CHANGED
@@ -1,22 +1,18 @@
 
 
1
  # imports
2
  import gradio as gr
3
  import pandas as pd
4
  import tempfile
5
  import itertools
6
  # import required packages
7
- #import torch
8
- import pandas as pd
9
  import numpy as np
10
  from numpy import dot
11
  from numpy.linalg import norm, multi_dot
12
  from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer
13
 
14
- # load tokenizer and model, create trainer
15
- model_name = "j-hartmann/emotion-english-distilroberta-base"
16
- tokenizer = AutoTokenizer.from_pretrained(model_name)
17
- model = AutoModelForSequenceClassification.from_pretrained(model_name)
18
- trainer = Trainer(model=model)
19
-
20
  # compute dot product of inputs
21
  # summary function - test for single gradio function interfrace
22
  def gr_cosine_similarity(sentence1, sentence2):
@@ -31,6 +27,13 @@ def gr_cosine_similarity(sentence1, sentence2):
31
  def __getitem__(self, idx):
32
  return {k: v[idx] for k, v in self.tokenized_texts.items()}
33
 
 
 
 
 
 
 
 
34
  # sentences in list
35
  lines_s = [sentence1, sentence2]
36
  print(type(sentence1), type(sentence2))
 
1
+ !pip install transformers
2
+
3
  # imports
4
  import gradio as gr
5
  import pandas as pd
6
  import tempfile
7
  import itertools
8
  # import required packages
9
+ import torch
10
+
11
  import numpy as np
12
  from numpy import dot
13
  from numpy.linalg import norm, multi_dot
14
  from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer
15
 
 
 
 
 
 
 
16
  # compute dot product of inputs
17
  # summary function - test for single gradio function interfrace
18
  def gr_cosine_similarity(sentence1, sentence2):
 
27
  def __getitem__(self, idx):
28
  return {k: v[idx] for k, v in self.tokenized_texts.items()}
29
 
30
+ # load tokenizer and model, create trainer
31
+ model_name = "j-hartmann/emotion-english-distilroberta-base"
32
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
33
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
34
+ trainer = Trainer(model=model)
35
+
36
+
37
  # sentences in list
38
  lines_s = [sentence1, sentence2]
39
  print(type(sentence1), type(sentence2))