Spaces:
Runtime error
Runtime error
Commit
·
cbf355e
1
Parent(s):
f1b26d2
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,18 @@
|
|
|
|
|
|
1 |
# imports
|
2 |
import gradio as gr
|
3 |
import pandas as pd
|
4 |
import tempfile
|
5 |
import itertools
|
6 |
# import required packages
|
7 |
-
|
8 |
-
|
9 |
import numpy as np
|
10 |
from numpy import dot
|
11 |
from numpy.linalg import norm, multi_dot
|
12 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer
|
13 |
|
14 |
-
# load tokenizer and model, create trainer
|
15 |
-
model_name = "j-hartmann/emotion-english-distilroberta-base"
|
16 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
17 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
18 |
-
trainer = Trainer(model=model)
|
19 |
-
|
20 |
# compute dot product of inputs
|
21 |
# summary function - test for single gradio function interfrace
|
22 |
def gr_cosine_similarity(sentence1, sentence2):
|
@@ -31,6 +27,13 @@ def gr_cosine_similarity(sentence1, sentence2):
|
|
31 |
def __getitem__(self, idx):
|
32 |
return {k: v[idx] for k, v in self.tokenized_texts.items()}
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
# sentences in list
|
35 |
lines_s = [sentence1, sentence2]
|
36 |
print(type(sentence1), type(sentence2))
|
|
|
1 |
+
!pip install transformers
|
2 |
+
|
3 |
# imports
|
4 |
import gradio as gr
|
5 |
import pandas as pd
|
6 |
import tempfile
|
7 |
import itertools
|
8 |
# import required packages
|
9 |
+
import torch
|
10 |
+
|
11 |
import numpy as np
|
12 |
from numpy import dot
|
13 |
from numpy.linalg import norm, multi_dot
|
14 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
# compute dot product of inputs
|
17 |
# summary function - test for single gradio function interfrace
|
18 |
def gr_cosine_similarity(sentence1, sentence2):
|
|
|
27 |
def __getitem__(self, idx):
|
28 |
return {k: v[idx] for k, v in self.tokenized_texts.items()}
|
29 |
|
30 |
+
# load tokenizer and model, create trainer
|
31 |
+
model_name = "j-hartmann/emotion-english-distilroberta-base"
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
33 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
34 |
+
trainer = Trainer(model=model)
|
35 |
+
|
36 |
+
|
37 |
# sentences in list
|
38 |
lines_s = [sentence1, sentence2]
|
39 |
print(type(sentence1), type(sentence2))
|