Spaces:
Sleeping
Sleeping
File size: 2,673 Bytes
3fdead9 3be0237 a7d7295 5bf9849 51c2df6 5bf9849 dbe832f 3be0237 51c2df6 a6e6530 a23b87a a858470 a6e6530 a23b87a a858470 2463937 3be0237 f979ae8 51c2df6 f979ae8 51c2df6 4f05ca4 f979ae8 51c2df6 f979ae8 3be0237 4f05ca4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
import gradio as gr
import os
from langchain.chains.question_answering import load_qa_chain
from langchain.document_loaders import UnstructuredURLLoader
from langchain import OpenAI
from langchain import HuggingFaceHub
os.environ[
"HUGGINGFACEHUB_API_TOKEN"] = "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"
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com"
os.environ["LANGCHAIN_API_KEY"] = "ls__ae9b316f4ee9475b84f66c616344d713"
os.environ["LANGCHAIN_PROJECT"] = "Sequential-Chain"
def main():
with gr.Blocks() as demo:
with gr.Tab(label="tab1", id="tab1"): #标签页1
input_url1 = gr.inputs.Textbox(label="URL", lines=1)
outputs1 = gr.outputs.Textbox(label="输出")
text_button = gr.Button("提交")
# gr.Interface(fn=my_inference_function,inputs=input_url1,outputs=outputs1)
with gr.Tab(label="tab2", id="tab2"): #标签页2
input_api_key = gr.inputs.Textbox(label="ChatGPT API Key", lines=1)
input_api_base = gr.inputs.Textbox(label="ChatGPT API 地址(默认无地址)", lines=1)
input_url2 = gr.inputs.Textbox(label="URL", lines=1)
outputs2 = gr.outputs.Textbox(label="输出")
vid_button = gr.Button("提交")
# gr.Interface(fn=my_chatgpt_function,inputs=[input_api_key, input_api_base, input_url2],outputs=outputs2)
demo.launch()
def my_chatgpt_function(api_key, api_base, url):
os.environ["OPENAI_API_KEY"] = api_key
os.environ['OPENAI_API_BASE'] = api_base
llm = OpenAI(temperature=0.7, model_name="gpt-3.5-turbo", max_tokens=1024)
loader = UnstructuredURLLoader(urls=[url])
data = loader.load()
chain = load_qa_chain(llm=llm, chain_type="stuff")
response = chain.run(input_documents=data,
question="""请用中文总结文章的内容,并以下面模版给出结果:
《文章标题》摘要如下:
## 一句话描述
文章摘要内容
## 文章略读
文章要点""")
return response
def my_inference_function(url):
llm = HuggingFaceHub(repo_id="declare-lab/flan-alpaca-large",
model_kwargs={
"temperature": 0.1,
"max_length": 512
})
loader = UnstructuredURLLoader(urls=[url])
data = loader.load()
chain = load_qa_chain(llm=llm, chain_type="stuff")
response = chain.run(input_documents=data,
question="Summarize this article in one paragraph")
return response
if __name__ == '__main__':
main()
|