import torch.nn as nn import timm class Model(nn.Module): def __init__(self, model_name, pretrained=True): super(Model, self).__init__() # Load the pretrained ConvNeXt model (you can choose the specific variant you want) self.model = timm.create_model(model_name, pretrained=pretrained) self.model.head.fc = nn.Linear(self.model.head.fc.in_features, 1) # change the last linear for classification def forward(self, x): return self.model(x)