Spaces:
Sleeping
Sleeping
File size: 3,119 Bytes
97e0d2f 634718b 97e0d2f 69a4842 97e0d2f 69a4842 d1f2c3b 69a4842 97e0d2f 69a4842 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
import gradio as gr
import torchvision.transforms as transforms
from torchvision.transforms import InterpolationMode
import torch
from huggingface_hub import hf_hub_download
from model import Model
# Load Model
model_path = hf_hub_download(
repo_id="itserr/exvoto_classifier_convnext_base_224",
filename="model.pt"
)
model = Model('convnext_base')
ckpt = torch.load(model_path, map_location=torch.device("cpu")) # Ensure compatibility
model.load_state_dict(ckpt['model'])
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model.to(device)
model.eval()
# Image Transformations
transform = transforms.Compose([
transforms.Resize(size=(224,224), interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
# Classification Function
def classify_img(img, threshold):
classification_threshold = threshold
img_tensor = transform(img).unsqueeze(0).to(device)
with torch.no_grad():
pred = model(img_tensor)
score = torch.sigmoid(pred).item()
# Determine Prediction
if score >= classification_threshold:
label = "✅ This is an **Ex-Voto** image!"
else:
label = "❌ This is **NOT** an Ex-Voto image."
# Format Confidence Score
confidence = f"The probability that the image is an ex-voto is: {score:.2%}"
return label, confidence
example_images = [['examples/exvoto1.jpg', None],
['examples/exvoto2.jpg', None],
['examples/nonexvoto1.jpg', None],
['examples/nonexvoto2.jpg', None],
['examples/natural1.jpg', None],
['examples/natural2.jpg', None],]
# Function to Clear Outputs When a New Image is Uploaded
def clear_outputs(img):
return gr.update(value=""), gr.update(value="")
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("## Ex-Voto Image Classifier")
gr.Markdown("📸 **Upload an image** to check if it's an **Ex-Voto** painting!")
with gr.Row():
with gr.Column(scale=2): # Left section: Image upload & slider
img_input = gr.Image(type="pil")
threshold_slider = gr.Slider(
minimum=0.5, maximum=1.0, value=0.7, step=0.1, label="Classification Threshold"
)
submit_btn = gr.Button("Classify")
with gr.Column(scale=1): # Right section: Prediction & Confidence
prediction_output = gr.Textbox(label="Prediction", interactive=False)
confidence_output = gr.Textbox(label="Confidence Score", interactive=False)
# Clear outputs when a new image is uploaded
img_input.change(fn=clear_outputs, inputs=[img_input], outputs=[prediction_output, confidence_output])
# Submit button triggers classification
submit_btn.click(fn=classify_img, inputs=[img_input, threshold_slider], outputs=[prediction_output, confidence_output])
# Example images (Only show images, no threshold value)
gr.Examples(
examples=example_images,
inputs=[img_input]
)
# Launch App
demo.launch() |