Spaces:
Sleeping
Sleeping
from huggingface_hub import InferenceClient | |
import gradio as gr | |
import random | |
from langchain_community.tools import DuckDuckGoSearchRun | |
API_URL = "https://api-inference.huggingface.co/models/" | |
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.1") | |
# Initialize DuckDuckGo search tool | |
duckduckgo_search = DuckDuckGoSearchRun() | |
def format_prompt(message, history): | |
prompt = "<s>" | |
for user_prompt, bot_response in history: | |
prompt += f"[INST] {user_prompt} [/INST]" | |
prompt += f" {bot_response}</s> " | |
prompt += f"[INST] {message} [/INST]" | |
return prompt | |
def generate(prompt, history, temperature=0.9, max_new_tokens=512, top_p=0.95, repetition_penalty=1.0): | |
temperature = float(temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
seed=random.randint(0, 10**7), | |
) | |
formatted_prompt = format_prompt(prompt, history) | |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
output = "" | |
for response in stream: | |
output += response.token.text | |
# Yield model's response first | |
yield output | |
# Now, perform DuckDuckGo search and yield results | |
search_result = duckduckgo_search.run(prompt) | |
if search_result: | |
yield search_result | |
else: | |
yield "Sorry, I couldn't find any relevant information." | |
additional_inputs=[ | |
gr.Slider( | |
label="Temperature", | |
value=0.9, | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
interactive=True, | |
info="Higher values produce more diverse outputs", | |
), | |
gr.Slider( | |
label="Max new tokens", | |
value=512, | |
minimum=64, | |
maximum=1024, | |
step=64, | |
interactive=True, | |
info="The maximum numbers of new tokens", | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
value=0.90, | |
minimum=0.0, | |
maximum=1, | |
step=0.05, | |
interactive=True, | |
info="Higher values sample more low-probability tokens", | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
value=1.2, | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
interactive=True, | |
info="Penalize repeated tokens", | |
) | |
] | |
customCSS = """ | |
#component-7 { # this is the default element ID of the chat component | |
height: 800px; # adjust the height as needed | |
flex-grow: 1; | |
} | |
""" | |
with gr.Blocks(css=customCSS) as demo: | |
gr.ChatInterface( | |
generate, | |
title = "RAG_FRIDAY_3.0🤖 WELCOME TO OPEN-SOURCE FREEDOM🤗", | |
description = "Getting real-time updated results for prompts is still propreitary in face of GPT-4,Co-Pilot etc. This app serves as a open-source alternative for this! UPDATE: Previous version of this app i.e. RAG_FRIDAY_mark_2 has faced some techncial issues due to rate limit errors. Problem and solution have been updated by me thanks to this community thread: https://github.com/joaomdmoura/crewAI/issues/136", | |
additional_inputs=additional_inputs, | |
) | |
demo.queue().launch(debug=True) | |