import gradio as gr import numpy as np import onnx_asr models = { name: onnx_asr.load_model(name) for name in [ "gigaam-v2-ctc", "gigaam-v2-rnnt", "nemo-fastconformer-ru-ctc", "nemo-fastconformer-ru-rnnt", "alphacep/vosk-model-ru", "alphacep/vosk-model-small-ru", "whisper-base", ] } def recoginize(audio: tuple[int, np.ndarray]): sample_rate, waveform = audio waveform = waveform.astype(np.float32) / 2 ** (8 * waveform.itemsize - 1) return [[name, model.recognize(waveform, sample_rate=sample_rate, language="ru")] for name, model in models.items()] demo = gr.Interface( fn=recoginize, title="ASR demo using onnx-asr (Russian models)", description="""# Automatic Speech Recognition in Python using ONNX models - [onnx-asr](https://github.com/istupakov/onnx-asr) ## Models used in demo: * `gigaam-v2-ctc` - Sber GigaAM v2 CTC ([origin](https://github.com/salute-developers/GigaAM), [onnx](https://huggingface.co/istupakov/gigaam-v2-onnx)) * `gigaam-v2-rnnt` - Sber GigaAM v2 RNN-T ([origin](https://github.com/salute-developers/GigaAM), [onnx](https://huggingface.co/istupakov/gigaam-v2-onnx)) * `nemo-fastconformer-ru-ctc` - Nvidia FastConformer-Hybrid Large (ru) with CTC decoder ([origin](https://huggingface.co/nvidia/stt_ru_fastconformer_hybrid_large_pc), [onnx](https://huggingface.co/istupakov/stt_ru_fastconformer_hybrid_large_pc_onnx)) * `nemo-fastconformer-ru-rnnt` - Nvidia FastConformer-Hybrid Large (ru) with RNN-T decoder ([origin](https://huggingface.co/nvidia/stt_ru_fastconformer_hybrid_large_pc), [onnx](https://huggingface.co/istupakov/stt_ru_fastconformer_hybrid_large_pc_onnx)) * `alphacep/vosk-model-ru` - Alpha Cephei Vosk 0.54-ru ([origin](https://huggingface.co/alphacep/vosk-model-ru)) * `alphacep/vosk-model-small-ru` - Alpha Cephei Vosk 0.52-small-ru ([origin](https://huggingface.co/alphacep/vosk-model-small-ru)) * `whisper-base` - OpenAI Whisper Base exported with onnxruntime ([origin](https://huggingface.co/openai/whisper-base), [onnx](https://huggingface.co/istupakov/whisper-base-onnx)) """, inputs=[gr.Audio(min_length=1, max_length=10)], outputs=[gr.Dataframe(headers=["Model", "result"], wrap=True, show_fullscreen_button=True)], flagging_mode="never", ) demo.launch()