import gradio as gr import numpy as np import onnx_asr models = {name: onnx_asr.load_model(name) for name in ["alphacep/vosk-model-ru", "alphacep/vosk-model-small-ru"]} def recoginize(audio: tuple[int, np.ndarray]): sample_rate, waveform = audio waveform = waveform.astype(np.float32) / 2 ** (8 * waveform.itemsize - 1) return [[name, model.recognize(waveform, sample_rate=sample_rate)] for name, model in models.items()] demo = gr.Interface( fn=recoginize, inputs=[gr.Audio(min_length=1, max_length=10)], outputs=[gr.Dataframe(headers=["Model", "result"], wrap=True, show_fullscreen_button=True)], flagging_mode="never", ) demo.launch()