onnx-asr / app.py
istupakov's picture
Update app.py
1ba0470 verified
import logging
from importlib.metadata import version
from timeit import default_timer as timer
import gradio as gr
import numpy as np
import onnx_asr
logging.basicConfig(format="%(asctime)s %(levelname)s %(message)s", level=logging.WARNING)
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
logger.info("onnx_asr version: %s", version("onnx_asr"))
vad = onnx_asr.load_vad("silero")
whisper = {name: onnx_asr.load_model(name) for name in ["whisper-base"]}
models_ru = {
name: onnx_asr.load_model(name)
for name in [
"gigaam-v2-ctc",
"gigaam-v2-rnnt",
"nemo-fastconformer-ru-ctc",
"nemo-fastconformer-ru-rnnt",
"alphacep/vosk-model-ru",
"alphacep/vosk-model-small-ru",
]
}
models_en = {
name: onnx_asr.load_model(name, quantization="int8")
for name in [
"nemo-parakeet-ctc-0.6b",
"nemo-parakeet-rnnt-0.6b",
]
}
models_vad = models_ru | models_en | whisper
def recognize(audio: tuple[int, np.ndarray], models, language):
if audio is None:
return None
sample_rate, waveform = audio
logger.debug("recognize: sample_rate %s, waveform.shape %s.", sample_rate, waveform.shape)
try:
waveform = waveform.astype(np.float32) / 2 ** (8 * waveform.itemsize - 1)
if waveform.ndim == 2:
waveform = waveform.mean(axis=1)
results = []
for name, model in models.items():
start = timer()
result = model.recognize(waveform, sample_rate=sample_rate, language=language)
time = timer() - start
logger.debug("recognized by %s: result '%s', time %.3f s.", name, result, time)
results.append([name, result, f"{time:.3f} s."])
except Exception as e:
raise gr.Error(f"{e} Audio: sample_rate: {sample_rate}, waveform.shape: {waveform.shape}.") from e
else:
return results
def recognize_ru(audio: tuple[int, np.ndarray]):
return recognize(audio, models_ru | whisper, "ru")
def recognize_en(audio: tuple[int, np.ndarray]):
return recognize(audio, models_en | whisper, "en")
def recognize_with_vad(audio: tuple[int, np.ndarray], name: str):
if audio is None:
return None
sample_rate, waveform = audio
logger.debug("recognize: sample_rate %s, waveform.shape %s.", sample_rate, waveform.shape)
try:
waveform = waveform.astype(np.float32) / 2 ** (8 * waveform.itemsize - 1)
if waveform.ndim == 2:
waveform = waveform.mean(axis=1)
model = models_vad[name].with_vad(vad, batch_size=1)
results = ""
for res in model.recognize(waveform, sample_rate=sample_rate):
logger.debug("recognized by %s: result '%s'.", name, res)
results += f"[{res.start:5.1f}, {res.end:5.1f}]: {res.text}\n"
yield results
except Exception as e:
raise gr.Error(f"{e} Audio: sample_rate: {sample_rate}, waveform.shape: {waveform.shape}.") from e
with gr.Blocks() as recognize_short:
audio = gr.Audio(min_length=1, max_length=20)
with gr.Row():
gr.ClearButton(audio)
btn_ru = gr.Button("Recognize (ru)", variant="primary")
btn_en = gr.Button("Recognize (en)", variant="primary")
output = gr.Dataframe(headers=["model", "result", "time"], wrap=True)
btn_ru.click(fn=recognize_ru, inputs=audio, outputs=output)
btn_en.click(fn=recognize_en, inputs=audio, outputs=output)
with gr.Blocks() as recognize_long:
name = gr.Dropdown(models_vad.keys(), label="Model")
audio = gr.Audio(min_length=1, max_length=300)
with gr.Row():
gr.ClearButton(audio)
btn = gr.Button("Recognize", variant="primary")
output = gr.TextArea(label="result") # headers=["start", "end", "result"], wrap=True, every=0.1)
btn.click(fn=recognize_with_vad, inputs=[audio, name], outputs=output)
with gr.Blocks() as demo:
gr.Markdown("""
# ASR demo using onnx-asr
**[onnx-asr](https://github.com/istupakov/onnx-asr)** is a Python package for Automatic Speech Recognition using ONNX models.
The package is written in pure Python with minimal dependencies (no `pytorch` or `transformers`).
""")
gr.TabbedInterface(
[recognize_short, recognize_long],
[
"Recognition of a short phrase (up to 20 sec.)",
"Recognition of a long phrase with VAD (up to 5 min.)",
],
)
with gr.Accordion("Models used in this demo...", open=False):
gr.Markdown("""
## ASR models
* `gigaam-v2-ctc` - Sber GigaAM v2 CTC ([origin](https://github.com/salute-developers/GigaAM), [onnx](https://huggingface.co/istupakov/gigaam-v2-onnx))
* `gigaam-v2-rnnt` - Sber GigaAM v2 RNN-T ([origin](https://github.com/salute-developers/GigaAM), [onnx](https://huggingface.co/istupakov/gigaam-v2-onnx))
* `nemo-fastconformer-ru-ctc` - Nvidia FastConformer-Hybrid Large (ru) with CTC decoder ([origin](https://huggingface.co/nvidia/stt_ru_fastconformer_hybrid_large_pc), [onnx](https://huggingface.co/istupakov/stt_ru_fastconformer_hybrid_large_pc_onnx))
* `nemo-fastconformer-ru-rnnt` - Nvidia FastConformer-Hybrid Large (ru) with RNN-T decoder ([origin](https://huggingface.co/nvidia/stt_ru_fastconformer_hybrid_large_pc), [onnx](https://huggingface.co/istupakov/stt_ru_fastconformer_hybrid_large_pc_onnx))
* `nemo-parakeet-ctc-0.6b` - Nvidia Parakeet CTC 0.6B (en) ([origin](https://huggingface.co/nvidia/parakeet-ctc-0.6b), [onnx](https://huggingface.co/istupakov/parakeet-ctc-0.6b-onnx))
* `nemo-parakeet-rnnt-0.6b` - Nvidia Parakeet RNNT 0.6B (en) ([origin](https://huggingface.co/nvidia/parakeet-rnnt-0.6b), [onnx](https://huggingface.co/istupakov/parakeet-rnnt-0.6b-onnx))
* `whisper-base` - OpenAI Whisper Base exported with onnxruntime ([origin](https://huggingface.co/openai/whisper-base), [onnx](https://huggingface.co/istupakov/whisper-base-onnx))
* `alphacep/vosk-model-ru` - Alpha Cephei Vosk 0.54-ru ([origin](https://huggingface.co/alphacep/vosk-model-ru))
* `alphacep/vosk-model-small-ru` - Alpha Cephei Vosk 0.52-small-ru ([origin](https://huggingface.co/alphacep/vosk-model-small-ru))
## VAD models
* `silero` - Silero VAD ([origin](https://github.com/snakers4/silero-vad), [onnx](https://huggingface.co/onnx-community/silero-vad))
""")
demo.launch()