|
from importlib.metadata import version |
|
|
|
import gradio as gr |
|
import numpy as np |
|
|
|
import onnx_asr |
|
|
|
print(f"onnx_asr version: {version('onnx_asr')}") |
|
models = { |
|
name: onnx_asr.load_model(name) |
|
for name in [ |
|
"gigaam-v2-ctc", |
|
"gigaam-v2-rnnt", |
|
"nemo-fastconformer-ru-ctc", |
|
"nemo-fastconformer-ru-rnnt", |
|
"alphacep/vosk-model-ru", |
|
"alphacep/vosk-model-small-ru", |
|
"whisper-base", |
|
] |
|
} |
|
|
|
|
|
def recoginize(audio: tuple[int, np.ndarray]): |
|
sample_rate, waveform = audio |
|
try: |
|
waveform = waveform.astype(np.float32) / 2 ** (8 * waveform.itemsize - 1) |
|
return [[name, model.recognize(waveform, sample_rate=sample_rate, language="ru")] for name, model in models.items()] |
|
except Exception as e: |
|
raise gr.Error(f"{e} Audio: sample_rate: {sample_rate}, waveform.shape: {waveform.shape}.") from e |
|
|
|
|
|
demo = gr.Interface( |
|
fn=recoginize, |
|
title="ASR demo using onnx-asr (Russian models)", |
|
description=""" |
|
# ONNX ASR |
|
|
|
[](https://pypi.org/project/onnx-asr) |
|
[](https://pypi.org/project/onnx-asr) |
|
[](https://pypi.org/project/onnx-asr) |
|
[](https://pypi.org/project/onnx-asr) |
|
[](https://github.com/istupakov/onnx-asr/blob/main/LICENSE) |
|
[](https://github.com/istupakov/onnx-asr/actions/workflows/python-package.yml) |
|
|
|
**[onnx-asr](https://github.com/istupakov/onnx-asr)** is a Python package for Automatic Speech Recognition using ONNX models. The package is written in pure Python with minimal dependencies (*PyTorch is not required*): |
|
|
|
[](https://pypi.org/project/numpy/) |
|
[](https://pypi.org/project/onnxruntime/) |
|
[](https://pypi.org/project/huggingface-hub/) |
|
|
|
## Models used in demo: |
|
* `gigaam-v2-ctc` - Sber GigaAM v2 CTC ([origin](https://github.com/salute-developers/GigaAM), [onnx](https://huggingface.co/istupakov/gigaam-v2-onnx)) |
|
* `gigaam-v2-rnnt` - Sber GigaAM v2 RNN-T ([origin](https://github.com/salute-developers/GigaAM), [onnx](https://huggingface.co/istupakov/gigaam-v2-onnx)) |
|
* `nemo-fastconformer-ru-ctc` - Nvidia FastConformer-Hybrid Large (ru) with CTC decoder ([origin](https://huggingface.co/nvidia/stt_ru_fastconformer_hybrid_large_pc), [onnx](https://huggingface.co/istupakov/stt_ru_fastconformer_hybrid_large_pc_onnx)) |
|
* `nemo-fastconformer-ru-rnnt` - Nvidia FastConformer-Hybrid Large (ru) with RNN-T decoder ([origin](https://huggingface.co/nvidia/stt_ru_fastconformer_hybrid_large_pc), [onnx](https://huggingface.co/istupakov/stt_ru_fastconformer_hybrid_large_pc_onnx)) |
|
* `alphacep/vosk-model-ru` - Alpha Cephei Vosk 0.54-ru ([origin](https://huggingface.co/alphacep/vosk-model-ru)) |
|
* `alphacep/vosk-model-small-ru` - Alpha Cephei Vosk 0.52-small-ru ([origin](https://huggingface.co/alphacep/vosk-model-small-ru)) |
|
* `whisper-base` - OpenAI Whisper Base exported with onnxruntime ([origin](https://huggingface.co/openai/whisper-base), [onnx](https://huggingface.co/istupakov/whisper-base-onnx)) |
|
""", |
|
inputs=[gr.Audio(min_length=1, max_length=20)], |
|
outputs=[gr.Dataframe(headers=["Model", "result"], wrap=True, show_fullscreen_button=True)], |
|
flagging_mode="never", |
|
) |
|
|
|
demo.launch() |
|
|