File size: 673 Bytes
98a6067 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
import gradio as gr
import numpy as np
import onnx_asr
models = {name: onnx_asr.load_model(name) for name in ["alphacep/vosk-model-ru", "alphacep/vosk-model-small-ru"]}
def recoginize(audio: tuple[int, np.ndarray]):
sample_rate, waveform = audio
waveform = waveform.astype(np.float32) / 2 ** (8 * waveform.itemsize - 1)
return [[name, model.recognize(waveform, sample_rate=sample_rate)] for name, model in models.items()]
demo = gr.Interface(
fn=recoginize,
inputs=[gr.Audio(min_length=1, max_length=10)],
outputs=[gr.Dataframe(headers=["Model", "result"], wrap=True, show_fullscreen_button=True)],
flagging_mode="never",
)
demo.launch()
|