Spaces:
Sleeping
Sleeping
File size: 15,847 Bytes
dbbc4fe 02116bc dbbc4fe 9174245 026ebc5 d75bb73 2c474c5 37deff4 026ebc5 37deff4 2c474c5 dad1232 c723914 d75bb73 851126c d75bb73 851126c d75bb73 851126c d75bb73 02116bc d75bb73 9174245 d75bb73 aa9caf1 d75bb73 ac14a76 d75bb73 02116bc d75bb73 02116bc 9174245 d75bb73 5aa1d82 d75bb73 aa9caf1 d75bb73 02116bc d75bb73 ac14a76 d75bb73 02116bc d75bb73 02116bc d75bb73 ac14a76 02116bc 9174245 851126c ee502f6 02116bc ee502f6 02116bc ee502f6 02116bc 851126c 02116bc ee502f6 851126c ee502f6 02116bc ee502f6 8915be6 02116bc ee502f6 893dd33 279530a d75bb73 279530a d75bb73 02116bc 279530a d75bb73 851126c ba59c03 ad608c7 ba59c03 851126c d75bb73 ad608c7 15a8307 d75bb73 9174245 d75bb73 87cea30 17011cd d75bb73 9174245 c7730e8 9174245 17011cd d75bb73 9174245 17011cd 9174245 17011cd 9174245 02116bc 851126c 893dd33 5aa1d82 f929629 893dd33 17011cd 02116bc 851126c ee502f6 851126c d75bb73 ee502f6 9174245 5aa1d82 f929629 17011cd 9174245 851126c 02116bc 66d85d7 02116bc 851126c 44ce1ea c723914 89927ac ac14a76 44ce1ea 17011cd 02116bc ac14a76 aa9caf1 9af7d46 02116bc d211fb0 9af7d46 02116bc 17011cd d4d7138 9af7d46 ae0274c 9af7d46 ae0274c 9af7d46 d4d7138 ae0274c d4d7138 ee502f6 17011cd 893dd33 02116bc 17011cd 02116bc 17011cd d75bb73 ee502f6 17011cd 851126c 2b6d901 47a091e 2b6d901 47a091e aa9caf1 dbbc4fe 851126c dbbc4fe 851126c 8e0b90f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
import gradio as gr
import pandas as pd
import os, json, datetime
from apscheduler.schedulers.background import BackgroundScheduler
from sklearn.metrics import mean_absolute_error
from huggingface_hub import login, hf_hub_download
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
import base64
# Log in programmatically using token from secrets.
login(token=os.getenv("HF_TOKEN"))
# ---------- Load Image for Description ----------
with open("assets/image.png", "rb") as f:
image_data = f.read()
encoded_image = base64.b64encode(image_data).decode("utf-8")
# ---------- CSV to COCO Conversion Functions ----------
def convert_gt_csv_to_coco(gt_df):
"""
Convert ground truth DataFrame to COCO-style dictionary.
Expected columns in gt_df: image_name, class_id, xmin, ymin, xmax, ymax, weight.
"""
images = []
annotations = []
# Create a mapping for image names to unique IDs.
image_names = gt_df["image_name"].unique()
image_id_map = {name: idx + 1 for idx, name in enumerate(image_names)}
# Create a list of categories from the unique class_ids.
category_ids = sorted(gt_df["class_id"].unique())
categories = [{"id": int(cat), "name": f"class_{int(cat)}"} for cat in category_ids]
ann_id = 1
for idx, row in gt_df.iterrows():
img_name = row["image_name"]
image_id = image_id_map[img_name]
# Add image information if not already added.
if image_id not in [img["id"] for img in images]:
images.append({"id": image_id, "file_name": img_name})
x = row["xmin"]
y = row["ymin"]
width = row["xmax"] - row["xmin"]
height = row["ymax"] - row["ymin"]
ann = {
"id": ann_id,
"image_id": image_id,
"category_id": int(row["class_id"]),
"bbox": [x, y, width, height],
"area": width * height,
"iscrowd": 0
}
annotations.append(ann)
ann_id += 1
coco_dict = {
"images": images,
"annotations": annotations,
"categories": categories
}
return coco_dict, image_id_map
def convert_pred_csv_to_coco(pred_df, image_id_map):
"""
Convert predictions DataFrame to COCO-style list of predictions.
Expected columns in pred_df: image_name, class_id, xmin, ymin, xmax, ymax, weight, conf.
"""
preds = []
for idx, row in pred_df.iterrows():
img_name = row["image_name"]
image_id = image_id_map.get(img_name)
if image_id is None:
continue # Skip predictions for images not in the ground truth.
x = row["xmin"]
y = row["ymin"]
width = row["xmax"] - row["xmin"]
height = row["ymax"] - row["ymin"]
pred = {
"image_id": image_id,
"category_id": int(row["class_id"]),
"bbox": [x, y, width, height],
"score": row["conf"]
}
preds.append(pred)
return preds
def compute_map50(gt_df, pred_df):
"""
Convert CSV DataFrames to COCO format and compute mAP50 using pycocotools.
Returns the mAP50 value.
"""
coco_gt_dict, image_id_map = convert_gt_csv_to_coco(gt_df)
coco_preds = convert_pred_csv_to_coco(pred_df, image_id_map)
# Save temporary JSON files.
gt_json_path = "temp_gt_coco.json"
pred_json_path = "temp_pred_coco.json"
with open(gt_json_path, "w") as f:
json.dump(coco_gt_dict, f)
with open(pred_json_path, "w") as f:
json.dump(coco_preds, f)
# Load ground truth and predictions with the COCO API.
cocoGt = COCO(gt_json_path)
try:
cocoDt = cocoGt.loadRes(pred_json_path)
except Exception as e:
print("Error loading predictions into COCO:", e)
return None
cocoEval = COCOeval(cocoGt, cocoDt, iouType="bbox")
# Set evaluation to only consider an IoU threshold of 0.50.
cocoEval.params.iouThrs = [0.5]
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()
# stats[0] is typically the [email protected].
return cocoEval.stats[0]
# ---------- Evaluation Functions (Combined Metrics) ----------
# Update leaderboard columns (here we remove explicit user and submission date fields).
LEADERBOARD_FILE = "evaluation_results.csv"
LEADERBOARD_COLUMNS = [
"Name", "Model", "mAP@50", "weight_MAE (g)",
"Paper", "Source Code", "Model Type", "Hub License"
]
def save_submission_result(result):
if os.path.exists(LEADERBOARD_FILE):
df = pd.read_csv(LEADERBOARD_FILE)
df = pd.concat([df, pd.DataFrame([result])], ignore_index=True)
else:
df = pd.DataFrame([result], columns=LEADERBOARD_COLUMNS)
df.to_csv(LEADERBOARD_FILE, index=False)
def load_leaderboard():
if os.path.exists(LEADERBOARD_FILE):
df = pd.read_csv(LEADERBOARD_FILE)
# Sort by mAP@50 (higher is better)
df = df.sort_values(by="mAP@50", ascending=False)
return df
else:
return pd.DataFrame(columns=LEADERBOARD_COLUMNS)
# --- Rate Limiting by IP ---
# A global dictionary that will map client IPs to the timestamp of their last submission.
submissions_by_ip = {}
# Set the allowed interval between submissions in seconds. Here, 86400 seconds = 1 day.
SUBMISSION_INTERVAL_SECONDS = 86400
def evaluate_submission(file, submission_name, model_description, link_paper, link_code, model_type, hub_license, req: gr.Request):
"""
Evaluate the submitted CSV by computing:
- mAP@50 (using COCO evaluation) for bounding boxes.
- Weight MAE for the food weight predictions.
Also implements a simple rate limiting per IP address to help avoid spam.
"""
# Get the client IP from the Gradio request.
client_ip = req.client.host if req.client and req.client.host else "unknown"
now = datetime.datetime.now()
# Check if this IP has submitted recently.
if client_ip in submissions_by_ip:
last_sub_time = submissions_by_ip[client_ip]
delta = (now - last_sub_time).total_seconds()
if delta < SUBMISSION_INTERVAL_SECONDS:
return f"โ Only one submission per day is allowed. Please try again later."
# Validate required fields.
if not submission_name.strip():
return "โ Name field is required."
if not model_description.strip():
return "โ Model field is required."
if file is None:
return "โ Please upload a file."
print("File received:", file)
try:
pred_df = pd.read_csv(file.name)
print("Prediction CSV columns:", pred_df.columns.tolist())
except Exception as e:
return f"โ Prediction CSV read failed: {e}"
try:
gt_path = hf_hub_download(
repo_id="issai/ground-truth-food-eval",
filename="ground_truth.csv",
repo_type="dataset",
token=True
)
gt_df = pd.read_csv(gt_path)
except Exception as e:
return "Error loading ground truth file: " + str(e)
print("Ground truth shape:", gt_df.shape)
print("Ground truth sample:")
print(gt_df.head())
print("Predictions shape:", pred_df.shape)
print("Predictions sample:")
print(pred_df.head())
# --- Compute mAP50 ---
ap50 = compute_map50(gt_df, pred_df)
if ap50 is None:
return "Error computing mAP@50."
print("Computed mAP50:", ap50)
# --- Compute Weight MAE ---
try:
df = pd.merge(gt_df, pred_df, on=["image_name", "class_id"], suffixes=("_gt", "_pred"))
except Exception as e:
return f"โ Error during merge for MAE: {e}"
df["weight_gt"] = pd.to_numeric(df["weight_gt"], errors="coerce")
df["weight_pred"] = pd.to_numeric(df["weight_pred"], errors="coerce")
before_filter = df.shape[0]
df = df[(df["weight_gt"] != -1) & (df["weight_pred"] != -1)]
filtered_out = before_filter - df.shape[0]
print(f"Filtered out {filtered_out} rows for MAE due to weight == -1")
if df.empty:
weight_mae = 0.0
else:
weight_mae = mean_absolute_error(df["weight_gt"], df["weight_pred"])
print("Computed Weight MAE:", weight_mae)
# --- Save Submission Result ---
result = {
"Name": submission_name,
"Model": model_description,
"mAP@50": f"{ap50:.3f}",
"weight_MAE (g)": f"{weight_mae:.3f}",
"Paper": link_paper,
"Source Code": link_code,
"Model Type": model_type,
"Hub License": hub_license,
}
save_submission_result(result)
# Update the last submission time for this IP.
submissions_by_ip[client_ip] = now
result_text = (
f"**Evaluation Results for '{submission_name}'**\n\n"
f"- Model: {model_description}\n"
f"- mAP@50: {ap50:.3f}\n"
f"- Weight MAE: {weight_mae:.3f} grams\n"
f"- Link to Paper: {link_paper}\n"
f"- Link to Source Code: {link_code}\n"
f"- Model Type: {model_type}\n"
f"- Hub License: {hub_license}\n"
)
return result_text
def evaluate_and_refresh(file, submission_name, model_description, link_paper, link_code, model_type, hub_license, req: gr.Request):
result_text = evaluate_submission(file, submission_name, model_description, link_paper, link_code, model_type, hub_license, req)
updated_leaderboard = load_leaderboard()
return result_text, updated_leaderboard
# ---------- Gradio Interface ----------
with gr.Blocks() as demo:
gr.Markdown("# Benchmark Leaderboard: Food Object Detection & Food Weight Estimation")
gr.HTML(f'<img src="data:image/png;base64,{encoded_image}" alt="Description" style="max-width:100%;height:auto;">')
gr.Markdown(
"This leaderboard evaluates submissions for the [Food Portion Benchmark dataset](https://huggingface.co/datasets/issai/Food_Portion_Benchmark) using **mAP@50** for bounding boxes "
"and **Mean Absolute Error (MAE)** for food weight predictions. \n\n"
"Submissions are expected in CSV format with the columns: `image_name, class_id, xmin, ymin, xmax, ymax, weight, conf`.\n\n"
"The ground truth CSV (kept privately) has the columns: `image_name, class_id, xmin, ymin, xmax, ymax, weight`.\n\n"
)
gr.Markdown(
"""
### Sample Submission Template
Download a sample CSV file to see the required format:
[Download Sample Submission CSV](https://huggingface.co/spaces/issai/Food-Weight-Benchmark/resolve/main/sample_submission.csv)
"""
)
# --- Leaderboard Tab (Public) ---
with gr.TabItem("๐
Leaderboard"):
leaderboard_output = gr.Dataframe(label="Leaderboard")
demo.load(load_leaderboard, outputs=leaderboard_output)
refresh_button = gr.Button("Refresh Leaderboard")
refresh_button.click(fn=load_leaderboard, outputs=leaderboard_output)
with gr.TabItem("๐ Metrics"):
gr.Markdown(
"""
### Evaluation Metrics
- **mAP@50 (Mean Average Precision at IoU 0.50):**
This metric evaluates how well the predicted bounding boxes match the ground truth. In mAP@50, a prediction is considered a true positive if the Intersection over Union (IoU) between the predicted box and the ground truth box is at least 0.50. The final score is averaged across all classes and images, yielding a single value between 0 and 1, where a higher value indicates better localization performance.
- **Weight MAE (Mean Absolute Error):**
This metric calculates the average absolute difference (in grams) between the predicted food weight and the actual weight provided in the ground truth. A lower MAE signifies more accurate weight predictions.
### Benchmark Dataset
The **Food Portion Benchmark dataset** is a comprehensive dataset for evaluating object detection and food weight estimation models. Here are some key details:
- **Dataset Composition:**
It contains 14,083 RGB images of food items spanning 133 distinct classes. For each food item, the dataset includes manually annotated bounding boxes and precise weight measurements.
- **Portion Sizes:**
Each food item is represented with annotations for three different portion sizes (big, average, small), reflecting the real-world variation in food serving sizes.
- **Annotations:**
The ground truth annotations include the food itemโs image name, class, bounding box coordinates in YOLO format, and weight in grams.
- **Reference and Access:**
You can explore and download the dataset on Hugging Face at the following link:
[Food Portion Benchmark Dataset](https://huggingface.co/datasets/issai/Food_Portion_Benchmark)
### Additional Notes
- **Submission Requirements:**
Prediction CSV files must contain: image_name, class_id, xmin, ymin, xmax, ymax, weight, conf
- **Evaluation Process:**
- **mAP@50** is computed via the COCO evaluation API using pycocotools library, which compares the predicted bounding boxes (along with their confidence scores) to the ground truth annotations.
- **Weight MAE** is computed using sklearnโs mean absolute error function.
- **Contact Information:**
For any questions regarding the dataset or evaluation methodology, please refer to the dataset documentation on Hugging Face or contact our support team.
"""
)
# --- Submission Tab ---
with gr.TabItem("๐ Submit CSV"):
gr.Markdown("**Submit your prediction CSV file and model metadata.**")
submission_file = gr.File(label="Upload Prediction CSV", file_types=[".csv"])
submission_name_textbox = gr.Textbox(label="Name *", placeholder="Enter your name", interactive=True)
model_description_textbox = gr.Textbox(label="Model *", placeholder="Enter model name", interactive=True)
link_paper_textbox = gr.Textbox(label="Link to Paper (URL)", placeholder="https://...", interactive=True)
link_code_textbox = gr.Textbox(label="Link to Source Code (URL)", placeholder="https://...", interactive=True)
model_type_dropdown = gr.Dropdown(label="Model Type", choices=["Open Source", "Private"], value="Open Source")
hub_license_dropdown = gr.Dropdown(label="Hub License", choices=["", "MIT", "Apache-2.0", "CC-BY", "CC-BY-NC-4.0", "Other"], value="")
submit_button = gr.Button("Evaluate Submission")
evaluation_output = gr.Markdown()
# No explicit username; rate limiting is done via client IP.
submit_button.click(
evaluate_and_refresh,
inputs=[
submission_file,
submission_name_textbox,
model_description_textbox,
link_paper_textbox,
link_code_textbox,
model_type_dropdown,
hub_license_dropdown
],
outputs=[evaluation_output, leaderboard_output]
)
gr.Markdown(
"""
### ๐ Citation
If you use the Food Portion Benchmark dataset in your research, please cite our work as follows:
```bibtex
@misc{foodportionbenchmark2025,
title={Paper Title},
author={Authors},
year={2025},
note={Under Review}
}
```
"""
)
# ---------- Scheduler (Optional) ----------
scheduler = BackgroundScheduler()
def restart_space():
pass
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch(show_api=False)
|