import os from transformers import pipeline def load_model(model_name): return pipeline( "text-generation", model=model_name, token=os.getenv("HUGGINGFACEHUB_API_TOKEN") ) def handle_chat(message, history=[], model_name="tiiuae/falcon-rw-1b"): chat_model = load_model(model_name) prompt = f"[INST] {message} [/INST]" try: response = chat_model(prompt, max_new_tokens=300, temperature=0.7)[0]['generated_text'] reply = response.replace(prompt, "").strip() except Exception as e: reply = f"⚠️ Error: {str(e)}" history.append((message, reply)) return history, history def handle_code(code, model_name="tiiuae/falcon-rw-1b"): chat_model = load_model(model_name) prompt = f"[INST] Fix, optimize, and explain this code:\n{code} [/INST]" try: response = chat_model(prompt, max_new_tokens=300, temperature=0.7)[0]['generated_text'] return response.replace(prompt, "").strip() except Exception as e: return f"⚠️ Error: {str(e)}" def handle_explain(code, model_name="tiiuae/falcon-rw-1b"): return handle_code(f"Explain this code: {code}", model_name) def handle_translate(code, model_name="tiiuae/falcon-rw-1b"): return handle_code(f"Translate this code into plain English: {code}", model_name) def handle_debug(code, model_name="tiiuae/falcon-rw-1b"): return handle_code(f"Find and fix any bugs in this code: {code}", model_name)