Spaces:
Running
Running
import streamlit as st | |
import pickle | |
import pandas as pd | |
from sentence_transformers import SentenceTransformer | |
from sentence_transformers import models | |
import numpy as np | |
res = pd.read_csv('qa2.csv') | |
# Load pre-computed embeddings | |
with open("embeddings_words.pkl", "rb") as f: | |
embedded_texts = pickle.load(f) | |
# Define model | |
model_name = 'kornwtp/simcse-model-phayathaibert' | |
word_embedding_model = models.Transformer(model_name) | |
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), pooling_mode='cls') # Use CLS token for representation | |
model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) | |
# Streamlit UI setup with custom CSS for styling | |
st.title("Thai Chat Bot", anchor="top") | |
st.markdown(""" | |
<style> | |
.css-1kyxreq { display: none; } # Hide the Streamlit default hamburger menu | |
.stApp { background-color: #F4F8FC; } | |
.stChatMessage-User { background-color: #4CAF50; color: white; padding: 15px; border-radius: 12px; margin-bottom: 10px; } | |
.stChatMessage-Assistant { background-color: #2196F3; color: white; padding: 15px; border-radius: 12px; margin-bottom: 10px; } | |
.stButton { background-color: #4CAF50; color: white; padding: 12px 25px; font-size: 18px; border-radius: 12px; } | |
.stTextInput { border-radius: 12px; padding: 10px; font-size: 16px; } | |
.stTextInput input { background-color: #f7f7f7; border: none; color: #333; } | |
.stMarkdown { font-size: 18px; font-family: 'Arial', sans-serif; line-height: 1.5; } | |
</style> | |
""", unsafe_allow_html=True) | |
# Initialize session state for messages | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
# Display existing chat messages | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# Display a greeting message | |
with st.chat_message("ai"): | |
st.write("สวัสดี! 😊") | |
# Get user input | |
if prompt := st.chat_input("พิมพ์ข้อความที่นี่ ..."): | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
# Show a loading spinner while processing | |
with st.spinner("กำลังค้นหาคำตอบ..."): | |
# Encode the user's prompt and calculate similarities | |
b = model.encode([prompt], normalize_embeddings=True) | |
inner_products = np.inner(b, embedded_texts) # Calculate inner products | |
# Get the index of the highest value | |
top_index = np.argmax(inner_products) | |
inner_products = inner_products.flatten() | |
similarity_percent = str(round(inner_products[top_index],2)) | |
answer = f"{similarity_percent}% : {res['A'][top_index]}" | |
with st.chat_message("assistant"): | |
st.write(answer) | |
# Save the assistant's answer in session state | |
st.session_state.messages.append({"role": "assistant", "content": answer}) | |
st.success("คำตอบเสร็จสิ้นแล้ว! 😊", icon="✅") | |