mentalwellness / utils /analytics_logger.py
invincible-jha
Add comprehensive logging system and analytics with log rotation
f83b968
raw
history blame contribute delete
6.42 kB
from typing import Dict, Any, Optional
import json
import time
from datetime import datetime
from utils.log_manager import LogManager
class AnalyticsLogger:
"""Handles logging of analytics events and metrics"""
def __init__(self):
self.log_manager = LogManager()
self.logger = self.log_manager.get_analytics_logger("events")
self.metrics_logger = self.log_manager.get_analytics_logger("metrics")
def log_user_interaction(self,
user_id: str,
interaction_type: str,
agent_type: str,
duration: float,
success: bool,
details: Optional[Dict] = None):
"""Log user interaction events"""
event = {
"event_type": "user_interaction",
"user_id": user_id,
"interaction_type": interaction_type,
"agent_type": agent_type,
"duration": duration,
"success": success,
"timestamp": datetime.now().isoformat(),
"details": details or {}
}
self.logger.info(f"User Interaction: {json.dumps(event, indent=2)}")
def log_agent_performance(self,
agent_type: str,
operation: str,
response_time: float,
success: bool,
error: Optional[str] = None):
"""Log agent performance metrics"""
metric = {
"metric_type": "agent_performance",
"agent_type": agent_type,
"operation": operation,
"response_time": response_time,
"success": success,
"error": error,
"timestamp": datetime.now().isoformat()
}
self.metrics_logger.info(f"Agent Performance: {json.dumps(metric, indent=2)}")
def log_system_health(self,
cpu_usage: float,
memory_usage: float,
active_users: int,
active_sessions: int):
"""Log system health metrics"""
metric = {
"metric_type": "system_health",
"cpu_usage": cpu_usage,
"memory_usage": memory_usage,
"active_users": active_users,
"active_sessions": active_sessions,
"timestamp": datetime.now().isoformat()
}
self.metrics_logger.info(f"System Health: {json.dumps(metric, indent=2)}")
def log_error(self,
error_type: str,
error_message: str,
severity: str,
context: Optional[Dict] = None):
"""Log error events"""
event = {
"event_type": "error",
"error_type": error_type,
"error_message": error_message,
"severity": severity,
"context": context or {},
"timestamp": datetime.now().isoformat()
}
self.logger.error(f"Error Event: {json.dumps(event, indent=2)}")
def log_security_event(self,
event_type: str,
user_id: str,
success: bool,
details: Optional[Dict] = None):
"""Log security-related events"""
event = {
"event_type": "security",
"security_event_type": event_type,
"user_id": user_id,
"success": success,
"details": details or {},
"timestamp": datetime.now().isoformat()
}
self.logger.info(f"Security Event: {json.dumps(event, indent=2)}")
def log_model_performance(self,
model_name: str,
operation: str,
input_tokens: int,
output_tokens: int,
response_time: float,
success: bool):
"""Log AI model performance metrics"""
metric = {
"metric_type": "model_performance",
"model_name": model_name,
"operation": operation,
"input_tokens": input_tokens,
"output_tokens": output_tokens,
"response_time": response_time,
"success": success,
"timestamp": datetime.now().isoformat()
}
self.metrics_logger.info(f"Model Performance: {json.dumps(metric, indent=2)}")
def log_user_feedback(self,
user_id: str,
interaction_id: str,
rating: int,
feedback_text: Optional[str] = None):
"""Log user feedback"""
event = {
"event_type": "user_feedback",
"user_id": user_id,
"interaction_id": interaction_id,
"rating": rating,
"feedback_text": feedback_text,
"timestamp": datetime.now().isoformat()
}
self.logger.info(f"User Feedback: {json.dumps(event, indent=2)}")
def log_session_metrics(self,
session_id: str,
user_id: str,
session_type: str,
start_time: str,
end_time: str,
metrics: Dict[str, Any]):
"""Log session-specific metrics"""
session_data = {
"metric_type": "session_metrics",
"session_id": session_id,
"user_id": user_id,
"session_type": session_type,
"start_time": start_time,
"end_time": end_time,
"duration": self._calculate_duration(start_time, end_time),
"metrics": metrics,
"timestamp": datetime.now().isoformat()
}
self.metrics_logger.info(f"Session Metrics: {json.dumps(session_data, indent=2)}")
def _calculate_duration(self, start_time: str, end_time: str) -> float:
"""Calculate duration between two ISO format timestamps"""
start = datetime.fromisoformat(start_time)
end = datetime.fromisoformat(end_time)
return (end - start).total_seconds()