Spaces:
Sleeping
Sleeping
Update local changes
Browse files- app.py +10 -5
- seminar_edition_ai.py +10 -4
app.py
CHANGED
@@ -6,6 +6,7 @@ from seminar_edition_ai import upload_file_ex, predictContemplando, predictProcl
|
|
6 |
|
7 |
HISTORY_ANSWER = ''
|
8 |
|
|
|
9 |
def activeSermonGuideZone(KEY):
|
10 |
#print("Button show " + buttonEvent.label)
|
11 |
return {text_button: gr.update (interactive = True), question_option: [KEY]}
|
@@ -22,23 +23,26 @@ def showMessage(questionAnswer, KEY):
|
|
22 |
with gr.Blocks() as demo:
|
23 |
|
24 |
gr.Markdown("SermonLab AI Demo.")
|
|
|
|
|
|
|
25 |
with gr.Tab("Preparando mi Serm贸n"):
|
26 |
text_input = gr.Textbox(label="T贸pico del serm贸n")
|
27 |
|
28 |
-
text_output = gr.Textbox(label="Respuesta", lines=10)
|
29 |
|
30 |
text_button = gr.Button("Crear")
|
31 |
|
32 |
text_download = gr.DownloadButton(
|
33 |
label="Descargar",
|
34 |
-
value=fileAddresToDownload,
|
35 |
every=10
|
36 |
)
|
37 |
|
38 |
text_button.click(
|
39 |
fn = predictFromInit,
|
40 |
-
inputs=text_input,
|
41 |
-
outputs=text_output
|
42 |
)
|
43 |
|
44 |
text_download.click(
|
@@ -227,6 +231,7 @@ if __name__ == "__main__":
|
|
227 |
llmBuilder = GeminiLLM()
|
228 |
|
229 |
embed_model = llmBuilder.getEmbeddingsModel()
|
230 |
-
|
|
|
231 |
|
232 |
demo.launch(share=True)
|
|
|
6 |
|
7 |
HISTORY_ANSWER = ''
|
8 |
|
9 |
+
llmModel = None
|
10 |
def activeSermonGuideZone(KEY):
|
11 |
#print("Button show " + buttonEvent.label)
|
12 |
return {text_button: gr.update (interactive = True), question_option: [KEY]}
|
|
|
23 |
with gr.Blocks() as demo:
|
24 |
|
25 |
gr.Markdown("SermonLab AI Demo.")
|
26 |
+
global llmModel
|
27 |
+
|
28 |
+
llmModelState = gr.State([llmModel])
|
29 |
with gr.Tab("Preparando mi Serm贸n"):
|
30 |
text_input = gr.Textbox(label="T贸pico del serm贸n")
|
31 |
|
32 |
+
text_output = gr.Textbox(label="Respuesta", lines = 10)
|
33 |
|
34 |
text_button = gr.Button("Crear")
|
35 |
|
36 |
text_download = gr.DownloadButton(
|
37 |
label="Descargar",
|
38 |
+
value = fileAddresToDownload,
|
39 |
every=10
|
40 |
)
|
41 |
|
42 |
text_button.click(
|
43 |
fn = predictFromInit,
|
44 |
+
inputs =[ text_input, llmModelState],
|
45 |
+
outputs = text_output
|
46 |
)
|
47 |
|
48 |
text_download.click(
|
|
|
231 |
llmBuilder = GeminiLLM()
|
232 |
|
233 |
embed_model = llmBuilder.getEmbeddingsModel()
|
234 |
+
global llmModel
|
235 |
+
llmModel = llmBuilder.getLLM()
|
236 |
|
237 |
demo.launch(share=True)
|
seminar_edition_ai.py
CHANGED
@@ -51,11 +51,15 @@ def getCurrentFileName():
|
|
51 |
fileAddresToDownload = f"{DIRECTORY_PATH_TO_DOWNLOAD}{os.sep}{getCurrentFileName()}"
|
52 |
FILE_PATH_NAME = fileAddresToDownload
|
53 |
|
54 |
-
def updatePromptTemplate(
|
|
|
|
|
|
|
|
|
55 |
prompt = PromptTemplate(template = promptTemplate,
|
56 |
input_variables = inputVariablesTemplate)
|
57 |
chain = load_qa_chain(
|
58 |
-
|
59 |
chain_type = "stuff",
|
60 |
prompt = prompt
|
61 |
)
|
@@ -99,14 +103,17 @@ def predictProclamando(queryKey):
|
|
99 |
####
|
100 |
#
|
101 |
####
|
102 |
-
def predictFromInit(sermonTopic):
|
103 |
global HISTORY_ANSWER
|
104 |
keyStr = 'SERMON_TOPIC'
|
105 |
|
106 |
templates = SermonGeminiPromptTemplate()
|
107 |
|
|
|
|
|
108 |
if HISTORY_ANSWER == '':
|
109 |
chain = updatePromptTemplate(
|
|
|
110 |
templates.getSermonPromptTemplates()['BUILD_INIT'],
|
111 |
[keyStr,'CANT_VERSICULOS','context']
|
112 |
)
|
@@ -209,7 +216,6 @@ def predictArgumentQuestionBuild(questionAnswer):
|
|
209 |
|
210 |
return answer
|
211 |
|
212 |
-
|
213 |
# A utility function for answer generation
|
214 |
def askQuestion(
|
215 |
question,
|
|
|
51 |
fileAddresToDownload = f"{DIRECTORY_PATH_TO_DOWNLOAD}{os.sep}{getCurrentFileName()}"
|
52 |
FILE_PATH_NAME = fileAddresToDownload
|
53 |
|
54 |
+
def updatePromptTemplate(
|
55 |
+
llmModel,
|
56 |
+
promptTemplate,
|
57 |
+
inputVariablesTemplate
|
58 |
+
):
|
59 |
prompt = PromptTemplate(template = promptTemplate,
|
60 |
input_variables = inputVariablesTemplate)
|
61 |
chain = load_qa_chain(
|
62 |
+
llmModel,
|
63 |
chain_type = "stuff",
|
64 |
prompt = prompt
|
65 |
)
|
|
|
103 |
####
|
104 |
#
|
105 |
####
|
106 |
+
def predictFromInit( sermonTopic, llmModelList):
|
107 |
global HISTORY_ANSWER
|
108 |
keyStr = 'SERMON_TOPIC'
|
109 |
|
110 |
templates = SermonGeminiPromptTemplate()
|
111 |
|
112 |
+
llm = llmModelList[0] if len(llmModelList) > 0 else None
|
113 |
+
|
114 |
if HISTORY_ANSWER == '':
|
115 |
chain = updatePromptTemplate(
|
116 |
+
llm,
|
117 |
templates.getSermonPromptTemplates()['BUILD_INIT'],
|
118 |
[keyStr,'CANT_VERSICULOS','context']
|
119 |
)
|
|
|
216 |
|
217 |
return answer
|
218 |
|
|
|
219 |
# A utility function for answer generation
|
220 |
def askQuestion(
|
221 |
question,
|