File size: 15,400 Bytes
36de41f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
from typing import Optional

import torch
import torch.nn
from einops import rearrange
from torch import nn

from .layers import MLP, TextProjection, TimestepEmbedder, apply_gate, attention


class RMSNorm(nn.Module):
    def __init__(
        self,
        dim: int,
        elementwise_affine=True,
        eps: float = 1e-6,
        device=None,
        dtype=None,
    ):
        """
        Initialize the RMSNorm normalization layer.

        Args:
            dim (int): The dimension of the input tensor.
            eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.

        Attributes:
            eps (float): A small value added to the denominator for numerical stability.
            weight (nn.Parameter): Learnable scaling parameter.

        """
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        self.eps = eps
        if elementwise_affine:
            self.weight = nn.Parameter(torch.ones(dim, **factory_kwargs))

    def _norm(self, x):
        """
        Apply the RMSNorm normalization to the input tensor.

        Args:
            x (torch.Tensor): The input tensor.

        Returns:
            torch.Tensor: The normalized tensor.

        """
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

    def forward(self, x):
        """
        Forward pass through the RMSNorm layer.

        Args:
            x (torch.Tensor): The input tensor.

        Returns:
            torch.Tensor: The output tensor after applying RMSNorm.

        """
        output = self._norm(x.float()).type_as(x)
        if hasattr(self, "weight"):
            output = output * self.weight
        return output


def get_norm_layer(norm_layer):
    """
    Get the normalization layer.

    Args:
        norm_layer (str): The type of normalization layer.

    Returns:
        norm_layer (nn.Module): The normalization layer.
    """
    if norm_layer == "layer":
        return nn.LayerNorm
    elif norm_layer == "rms":
        return RMSNorm
    else:
        raise NotImplementedError(f"Norm layer {norm_layer} is not implemented")


def get_activation_layer(act_type):
    """get activation layer

    Args:
        act_type (str): the activation type

    Returns:
        torch.nn.functional: the activation layer
    """
    if act_type == "gelu":
        return lambda: nn.GELU()
    elif act_type == "gelu_tanh":
        return lambda: nn.GELU(approximate="tanh")
    elif act_type == "relu":
        return nn.ReLU
    elif act_type == "silu":
        return nn.SiLU
    else:
        raise ValueError(f"Unknown activation type: {act_type}")

class IndividualTokenRefinerBlock(torch.nn.Module):
    def __init__(
        self,
        hidden_size,
        heads_num,
        mlp_width_ratio: str = 4.0,
        mlp_drop_rate: float = 0.0,
        act_type: str = "silu",
        qk_norm: bool = False,
        qk_norm_type: str = "layer",
        qkv_bias: bool = True,
        need_CA: bool = False,
        dtype: Optional[torch.dtype] = None,
        device: Optional[torch.device] = None,
    ):
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        self.need_CA = need_CA
        self.heads_num = heads_num
        head_dim = hidden_size // heads_num
        mlp_hidden_dim = int(hidden_size * mlp_width_ratio)

        self.norm1 = nn.LayerNorm(
            hidden_size, elementwise_affine=True, eps=1e-6, **factory_kwargs
        )
        self.self_attn_qkv = nn.Linear(
            hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs
        )
        qk_norm_layer = get_norm_layer(qk_norm_type)
        self.self_attn_q_norm = (
            qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
            if qk_norm
            else nn.Identity()
        )
        self.self_attn_k_norm = (
            qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
            if qk_norm
            else nn.Identity()
        )
        self.self_attn_proj = nn.Linear(
            hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs
        )

        self.norm2 = nn.LayerNorm(
            hidden_size, elementwise_affine=True, eps=1e-6, **factory_kwargs
        )
        act_layer = get_activation_layer(act_type)
        self.mlp = MLP(
            in_channels=hidden_size,
            hidden_channels=mlp_hidden_dim,
            act_layer=act_layer,
            drop=mlp_drop_rate,
            **factory_kwargs,
        )

        self.adaLN_modulation = nn.Sequential(
            act_layer(),
            nn.Linear(hidden_size, 2 * hidden_size, bias=True, **factory_kwargs),
        )

        if self.need_CA:
            self.cross_attnblock=CrossAttnBlock(hidden_size=hidden_size,
                        heads_num=heads_num,
                        mlp_width_ratio=mlp_width_ratio,
                        mlp_drop_rate=mlp_drop_rate,
                        act_type=act_type,
                        qk_norm=qk_norm,
                        qk_norm_type=qk_norm_type,
                        qkv_bias=qkv_bias,
                        **factory_kwargs,)
        # Zero-initialize the modulation
        nn.init.zeros_(self.adaLN_modulation[1].weight)
        nn.init.zeros_(self.adaLN_modulation[1].bias)

    def forward(
        self,
        x: torch.Tensor,
        c: torch.Tensor,  # timestep_aware_representations + context_aware_representations
        attn_mask: torch.Tensor = None,
        y: torch.Tensor = None,
    ):
        gate_msa, gate_mlp = self.adaLN_modulation(c).chunk(2, dim=1)

        norm_x = self.norm1(x)
        qkv = self.self_attn_qkv(norm_x)
        q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num)
        # Apply QK-Norm if needed
        q = self.self_attn_q_norm(q).to(v)
        k = self.self_attn_k_norm(k).to(v)

        # Self-Attention
        attn = attention(q, k, v, mode="torch", attn_mask=attn_mask)

        x = x + apply_gate(self.self_attn_proj(attn), gate_msa)
        
        if self.need_CA:
            x = self.cross_attnblock(x, c, attn_mask, y)

        # FFN Layer
        x = x + apply_gate(self.mlp(self.norm2(x)), gate_mlp)

        return x




class CrossAttnBlock(torch.nn.Module):
    def __init__(
        self,
        hidden_size,
        heads_num,
        mlp_width_ratio: str = 4.0,
        mlp_drop_rate: float = 0.0,
        act_type: str = "silu",
        qk_norm: bool = False,
        qk_norm_type: str = "layer",
        qkv_bias: bool = True,
        dtype: Optional[torch.dtype] = None,
        device: Optional[torch.device] = None,
    ):
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        self.heads_num = heads_num
        head_dim = hidden_size // heads_num

        self.norm1 = nn.LayerNorm(
            hidden_size, elementwise_affine=True, eps=1e-6, **factory_kwargs
        )
        self.norm1_2 = nn.LayerNorm(
            hidden_size, elementwise_affine=True, eps=1e-6, **factory_kwargs
        )
        self.self_attn_q = nn.Linear(
            hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs
        )
        self.self_attn_kv = nn.Linear(
            hidden_size, hidden_size*2, bias=qkv_bias, **factory_kwargs
        )
        qk_norm_layer = get_norm_layer(qk_norm_type)
        self.self_attn_q_norm = (
            qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
            if qk_norm
            else nn.Identity()
        )
        self.self_attn_k_norm = (
            qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
            if qk_norm
            else nn.Identity()
        )
        self.self_attn_proj = nn.Linear(
            hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs
        )

        self.norm2 = nn.LayerNorm(
            hidden_size, elementwise_affine=True, eps=1e-6, **factory_kwargs
        )
        act_layer = get_activation_layer(act_type)

        self.adaLN_modulation = nn.Sequential(
            act_layer(),
            nn.Linear(hidden_size, 2 * hidden_size, bias=True, **factory_kwargs),
        )
        # Zero-initialize the modulation
        nn.init.zeros_(self.adaLN_modulation[1].weight)
        nn.init.zeros_(self.adaLN_modulation[1].bias)

    def forward(
        self,
        x: torch.Tensor,
        c: torch.Tensor,  # timestep_aware_representations + context_aware_representations
        attn_mask: torch.Tensor = None,
        y: torch.Tensor=None,
        
    ):
        gate_msa, gate_mlp = self.adaLN_modulation(c).chunk(2, dim=1)

        norm_x = self.norm1(x)
        norm_y = self.norm1_2(y)
        q = self.self_attn_q(norm_x)
        q = rearrange(q, "B L (H D) -> B L H D",  H=self.heads_num)
        kv = self.self_attn_kv(norm_y)
        k, v = rearrange(kv, "B L (K H D) -> K B L H D", K=2, H=self.heads_num)
        # Apply QK-Norm if needed
        q = self.self_attn_q_norm(q).to(v)
        k = self.self_attn_k_norm(k).to(v)

        # Self-Attention
        attn = attention(q, k, v, mode="torch", attn_mask=attn_mask)

        x = x + apply_gate(self.self_attn_proj(attn), gate_msa)

        return x



class IndividualTokenRefiner(torch.nn.Module):
    def __init__(
        self,
        hidden_size,
        heads_num,
        depth,
        mlp_width_ratio: float = 4.0,
        mlp_drop_rate: float = 0.0,
        act_type: str = "silu",
        qk_norm: bool = False,
        qk_norm_type: str = "layer",
        qkv_bias: bool = True,
        need_CA:bool=False,
        dtype: Optional[torch.dtype] = None,
        device: Optional[torch.device] = None,
    ):  
        
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        self.need_CA = need_CA
        self.blocks = nn.ModuleList(
            [
                IndividualTokenRefinerBlock(
                    hidden_size=hidden_size,
                    heads_num=heads_num,
                    mlp_width_ratio=mlp_width_ratio,
                    mlp_drop_rate=mlp_drop_rate,
                    act_type=act_type,
                    qk_norm=qk_norm,
                    qk_norm_type=qk_norm_type,
                    qkv_bias=qkv_bias,
                    need_CA=self.need_CA,
                    **factory_kwargs,
                )
                for _ in range(depth)
            ]
        )


    def forward(
        self,
        x: torch.Tensor,
        c: torch.LongTensor,
        mask: Optional[torch.Tensor] = None,
        y:torch.Tensor=None,
    ):
        self_attn_mask = None
        if mask is not None:
            batch_size = mask.shape[0]
            seq_len = mask.shape[1]
            mask = mask.to(x.device)
            # batch_size x 1 x seq_len x seq_len
            self_attn_mask_1 = mask.view(batch_size, 1, 1, seq_len).repeat(
                1, 1, seq_len, 1
            )
            # batch_size x 1 x seq_len x seq_len
            self_attn_mask_2 = self_attn_mask_1.transpose(2, 3)
            # batch_size x 1 x seq_len x seq_len, 1 for broadcasting of heads_num
            self_attn_mask = (self_attn_mask_1 & self_attn_mask_2).bool()
            # avoids self-attention weight being NaN for padding tokens
            self_attn_mask[:, :, :, 0] = True
        
        
        for block in self.blocks:
            x = block(x, c, self_attn_mask,y)

        return x


class SingleTokenRefiner(torch.nn.Module):
    """
    A single token refiner block for llm text embedding refine.
    """
    def __init__(
        self,
        in_channels,
        hidden_size,
        heads_num,
        depth,
        mlp_width_ratio: float = 4.0,
        mlp_drop_rate: float = 0.0,
        act_type: str = "silu",
        qk_norm: bool = False,
        qk_norm_type: str = "layer",
        qkv_bias: bool = True,
        need_CA:bool=False,
        attn_mode: str = "torch",
        dtype: Optional[torch.dtype] = None,
        device: Optional[torch.device] = None,
    ):
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        self.attn_mode = attn_mode
        self.need_CA = need_CA
        assert self.attn_mode == "torch", "Only support 'torch' mode for token refiner."

        self.input_embedder = nn.Linear(
            in_channels, hidden_size, bias=True, **factory_kwargs
        )
        if self.need_CA:
            self.input_embedder_CA = nn.Linear(
            in_channels, hidden_size, bias=True, **factory_kwargs
        )

        act_layer = get_activation_layer(act_type)
        # Build timestep embedding layer
        self.t_embedder = TimestepEmbedder(hidden_size, act_layer, **factory_kwargs)
        # Build context embedding layer
        self.c_embedder = TextProjection(
            in_channels, hidden_size, act_layer, **factory_kwargs
        )

        self.individual_token_refiner = IndividualTokenRefiner(
            hidden_size=hidden_size,
            heads_num=heads_num,
            depth=depth,
            mlp_width_ratio=mlp_width_ratio,
            mlp_drop_rate=mlp_drop_rate,
            act_type=act_type,
            qk_norm=qk_norm,
            qk_norm_type=qk_norm_type,
            qkv_bias=qkv_bias,
            need_CA=need_CA,
            **factory_kwargs,
        )

    def forward(
        self,
        x: torch.Tensor,
        t: torch.LongTensor,
        mask: Optional[torch.LongTensor] = None,
        y: torch.LongTensor=None,
    ):
        timestep_aware_representations = self.t_embedder(t)

        if mask is None:
            context_aware_representations = x.mean(dim=1)
        else:
            mask_float = mask.unsqueeze(-1)  # [b, s1, 1]
            context_aware_representations = (x * mask_float).sum(
                dim=1
            ) / mask_float.sum(dim=1)
        context_aware_representations = self.c_embedder(context_aware_representations)
        c = timestep_aware_representations + context_aware_representations

        x = self.input_embedder(x)
        if self.need_CA:
            y = self.input_embedder_CA(y)
            x = self.individual_token_refiner(x, c, mask, y)
        else:
            x = self.individual_token_refiner(x, c, mask)

        return x



class Qwen2Connector(torch.nn.Module):
    def __init__(
        self,
        # biclip_dim=1024,
        in_channels=3584,
        hidden_size=4096,
        heads_num=32,
        depth=2,
        need_CA=False,
        device=None,
        dtype=torch.bfloat16,
    ):
        super().__init__()
        factory_kwargs = {"device": device, "dtype":dtype}

        self.S =SingleTokenRefiner(in_channels=in_channels,hidden_size=hidden_size,heads_num=heads_num,depth=depth,need_CA=need_CA,**factory_kwargs)
        self.global_proj_out=nn.Linear(in_channels,768)

        self.scale_factor = nn.Parameter(torch.zeros(1))
        with torch.no_grad():
            self.scale_factor.data += -(1 - 0.09)

    def forward(self, x,t,mask):
        mask_float = mask.unsqueeze(-1)  # [b, s1, 1]
        x_mean = (x * mask_float).sum(
                dim=1
            ) / mask_float.sum(dim=1) * (1 + self.scale_factor)

        global_out=self.global_proj_out(x_mean)
        encoder_hidden_states = self.S(x,t,mask)
        return encoder_hidden_states,global_out