Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,400 Bytes
36de41f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 |
from typing import Optional
import torch
import torch.nn
from einops import rearrange
from torch import nn
from .layers import MLP, TextProjection, TimestepEmbedder, apply_gate, attention
class RMSNorm(nn.Module):
def __init__(
self,
dim: int,
elementwise_affine=True,
eps: float = 1e-6,
device=None,
dtype=None,
):
"""
Initialize the RMSNorm normalization layer.
Args:
dim (int): The dimension of the input tensor.
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
Attributes:
eps (float): A small value added to the denominator for numerical stability.
weight (nn.Parameter): Learnable scaling parameter.
"""
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.eps = eps
if elementwise_affine:
self.weight = nn.Parameter(torch.ones(dim, **factory_kwargs))
def _norm(self, x):
"""
Apply the RMSNorm normalization to the input tensor.
Args:
x (torch.Tensor): The input tensor.
Returns:
torch.Tensor: The normalized tensor.
"""
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
"""
Forward pass through the RMSNorm layer.
Args:
x (torch.Tensor): The input tensor.
Returns:
torch.Tensor: The output tensor after applying RMSNorm.
"""
output = self._norm(x.float()).type_as(x)
if hasattr(self, "weight"):
output = output * self.weight
return output
def get_norm_layer(norm_layer):
"""
Get the normalization layer.
Args:
norm_layer (str): The type of normalization layer.
Returns:
norm_layer (nn.Module): The normalization layer.
"""
if norm_layer == "layer":
return nn.LayerNorm
elif norm_layer == "rms":
return RMSNorm
else:
raise NotImplementedError(f"Norm layer {norm_layer} is not implemented")
def get_activation_layer(act_type):
"""get activation layer
Args:
act_type (str): the activation type
Returns:
torch.nn.functional: the activation layer
"""
if act_type == "gelu":
return lambda: nn.GELU()
elif act_type == "gelu_tanh":
return lambda: nn.GELU(approximate="tanh")
elif act_type == "relu":
return nn.ReLU
elif act_type == "silu":
return nn.SiLU
else:
raise ValueError(f"Unknown activation type: {act_type}")
class IndividualTokenRefinerBlock(torch.nn.Module):
def __init__(
self,
hidden_size,
heads_num,
mlp_width_ratio: str = 4.0,
mlp_drop_rate: float = 0.0,
act_type: str = "silu",
qk_norm: bool = False,
qk_norm_type: str = "layer",
qkv_bias: bool = True,
need_CA: bool = False,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.need_CA = need_CA
self.heads_num = heads_num
head_dim = hidden_size // heads_num
mlp_hidden_dim = int(hidden_size * mlp_width_ratio)
self.norm1 = nn.LayerNorm(
hidden_size, elementwise_affine=True, eps=1e-6, **factory_kwargs
)
self.self_attn_qkv = nn.Linear(
hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs
)
qk_norm_layer = get_norm_layer(qk_norm_type)
self.self_attn_q_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
if qk_norm
else nn.Identity()
)
self.self_attn_k_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
if qk_norm
else nn.Identity()
)
self.self_attn_proj = nn.Linear(
hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs
)
self.norm2 = nn.LayerNorm(
hidden_size, elementwise_affine=True, eps=1e-6, **factory_kwargs
)
act_layer = get_activation_layer(act_type)
self.mlp = MLP(
in_channels=hidden_size,
hidden_channels=mlp_hidden_dim,
act_layer=act_layer,
drop=mlp_drop_rate,
**factory_kwargs,
)
self.adaLN_modulation = nn.Sequential(
act_layer(),
nn.Linear(hidden_size, 2 * hidden_size, bias=True, **factory_kwargs),
)
if self.need_CA:
self.cross_attnblock=CrossAttnBlock(hidden_size=hidden_size,
heads_num=heads_num,
mlp_width_ratio=mlp_width_ratio,
mlp_drop_rate=mlp_drop_rate,
act_type=act_type,
qk_norm=qk_norm,
qk_norm_type=qk_norm_type,
qkv_bias=qkv_bias,
**factory_kwargs,)
# Zero-initialize the modulation
nn.init.zeros_(self.adaLN_modulation[1].weight)
nn.init.zeros_(self.adaLN_modulation[1].bias)
def forward(
self,
x: torch.Tensor,
c: torch.Tensor, # timestep_aware_representations + context_aware_representations
attn_mask: torch.Tensor = None,
y: torch.Tensor = None,
):
gate_msa, gate_mlp = self.adaLN_modulation(c).chunk(2, dim=1)
norm_x = self.norm1(x)
qkv = self.self_attn_qkv(norm_x)
q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num)
# Apply QK-Norm if needed
q = self.self_attn_q_norm(q).to(v)
k = self.self_attn_k_norm(k).to(v)
# Self-Attention
attn = attention(q, k, v, mode="torch", attn_mask=attn_mask)
x = x + apply_gate(self.self_attn_proj(attn), gate_msa)
if self.need_CA:
x = self.cross_attnblock(x, c, attn_mask, y)
# FFN Layer
x = x + apply_gate(self.mlp(self.norm2(x)), gate_mlp)
return x
class CrossAttnBlock(torch.nn.Module):
def __init__(
self,
hidden_size,
heads_num,
mlp_width_ratio: str = 4.0,
mlp_drop_rate: float = 0.0,
act_type: str = "silu",
qk_norm: bool = False,
qk_norm_type: str = "layer",
qkv_bias: bool = True,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.heads_num = heads_num
head_dim = hidden_size // heads_num
self.norm1 = nn.LayerNorm(
hidden_size, elementwise_affine=True, eps=1e-6, **factory_kwargs
)
self.norm1_2 = nn.LayerNorm(
hidden_size, elementwise_affine=True, eps=1e-6, **factory_kwargs
)
self.self_attn_q = nn.Linear(
hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs
)
self.self_attn_kv = nn.Linear(
hidden_size, hidden_size*2, bias=qkv_bias, **factory_kwargs
)
qk_norm_layer = get_norm_layer(qk_norm_type)
self.self_attn_q_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
if qk_norm
else nn.Identity()
)
self.self_attn_k_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
if qk_norm
else nn.Identity()
)
self.self_attn_proj = nn.Linear(
hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs
)
self.norm2 = nn.LayerNorm(
hidden_size, elementwise_affine=True, eps=1e-6, **factory_kwargs
)
act_layer = get_activation_layer(act_type)
self.adaLN_modulation = nn.Sequential(
act_layer(),
nn.Linear(hidden_size, 2 * hidden_size, bias=True, **factory_kwargs),
)
# Zero-initialize the modulation
nn.init.zeros_(self.adaLN_modulation[1].weight)
nn.init.zeros_(self.adaLN_modulation[1].bias)
def forward(
self,
x: torch.Tensor,
c: torch.Tensor, # timestep_aware_representations + context_aware_representations
attn_mask: torch.Tensor = None,
y: torch.Tensor=None,
):
gate_msa, gate_mlp = self.adaLN_modulation(c).chunk(2, dim=1)
norm_x = self.norm1(x)
norm_y = self.norm1_2(y)
q = self.self_attn_q(norm_x)
q = rearrange(q, "B L (H D) -> B L H D", H=self.heads_num)
kv = self.self_attn_kv(norm_y)
k, v = rearrange(kv, "B L (K H D) -> K B L H D", K=2, H=self.heads_num)
# Apply QK-Norm if needed
q = self.self_attn_q_norm(q).to(v)
k = self.self_attn_k_norm(k).to(v)
# Self-Attention
attn = attention(q, k, v, mode="torch", attn_mask=attn_mask)
x = x + apply_gate(self.self_attn_proj(attn), gate_msa)
return x
class IndividualTokenRefiner(torch.nn.Module):
def __init__(
self,
hidden_size,
heads_num,
depth,
mlp_width_ratio: float = 4.0,
mlp_drop_rate: float = 0.0,
act_type: str = "silu",
qk_norm: bool = False,
qk_norm_type: str = "layer",
qkv_bias: bool = True,
need_CA:bool=False,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.need_CA = need_CA
self.blocks = nn.ModuleList(
[
IndividualTokenRefinerBlock(
hidden_size=hidden_size,
heads_num=heads_num,
mlp_width_ratio=mlp_width_ratio,
mlp_drop_rate=mlp_drop_rate,
act_type=act_type,
qk_norm=qk_norm,
qk_norm_type=qk_norm_type,
qkv_bias=qkv_bias,
need_CA=self.need_CA,
**factory_kwargs,
)
for _ in range(depth)
]
)
def forward(
self,
x: torch.Tensor,
c: torch.LongTensor,
mask: Optional[torch.Tensor] = None,
y:torch.Tensor=None,
):
self_attn_mask = None
if mask is not None:
batch_size = mask.shape[0]
seq_len = mask.shape[1]
mask = mask.to(x.device)
# batch_size x 1 x seq_len x seq_len
self_attn_mask_1 = mask.view(batch_size, 1, 1, seq_len).repeat(
1, 1, seq_len, 1
)
# batch_size x 1 x seq_len x seq_len
self_attn_mask_2 = self_attn_mask_1.transpose(2, 3)
# batch_size x 1 x seq_len x seq_len, 1 for broadcasting of heads_num
self_attn_mask = (self_attn_mask_1 & self_attn_mask_2).bool()
# avoids self-attention weight being NaN for padding tokens
self_attn_mask[:, :, :, 0] = True
for block in self.blocks:
x = block(x, c, self_attn_mask,y)
return x
class SingleTokenRefiner(torch.nn.Module):
"""
A single token refiner block for llm text embedding refine.
"""
def __init__(
self,
in_channels,
hidden_size,
heads_num,
depth,
mlp_width_ratio: float = 4.0,
mlp_drop_rate: float = 0.0,
act_type: str = "silu",
qk_norm: bool = False,
qk_norm_type: str = "layer",
qkv_bias: bool = True,
need_CA:bool=False,
attn_mode: str = "torch",
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.attn_mode = attn_mode
self.need_CA = need_CA
assert self.attn_mode == "torch", "Only support 'torch' mode for token refiner."
self.input_embedder = nn.Linear(
in_channels, hidden_size, bias=True, **factory_kwargs
)
if self.need_CA:
self.input_embedder_CA = nn.Linear(
in_channels, hidden_size, bias=True, **factory_kwargs
)
act_layer = get_activation_layer(act_type)
# Build timestep embedding layer
self.t_embedder = TimestepEmbedder(hidden_size, act_layer, **factory_kwargs)
# Build context embedding layer
self.c_embedder = TextProjection(
in_channels, hidden_size, act_layer, **factory_kwargs
)
self.individual_token_refiner = IndividualTokenRefiner(
hidden_size=hidden_size,
heads_num=heads_num,
depth=depth,
mlp_width_ratio=mlp_width_ratio,
mlp_drop_rate=mlp_drop_rate,
act_type=act_type,
qk_norm=qk_norm,
qk_norm_type=qk_norm_type,
qkv_bias=qkv_bias,
need_CA=need_CA,
**factory_kwargs,
)
def forward(
self,
x: torch.Tensor,
t: torch.LongTensor,
mask: Optional[torch.LongTensor] = None,
y: torch.LongTensor=None,
):
timestep_aware_representations = self.t_embedder(t)
if mask is None:
context_aware_representations = x.mean(dim=1)
else:
mask_float = mask.unsqueeze(-1) # [b, s1, 1]
context_aware_representations = (x * mask_float).sum(
dim=1
) / mask_float.sum(dim=1)
context_aware_representations = self.c_embedder(context_aware_representations)
c = timestep_aware_representations + context_aware_representations
x = self.input_embedder(x)
if self.need_CA:
y = self.input_embedder_CA(y)
x = self.individual_token_refiner(x, c, mask, y)
else:
x = self.individual_token_refiner(x, c, mask)
return x
class Qwen2Connector(torch.nn.Module):
def __init__(
self,
# biclip_dim=1024,
in_channels=3584,
hidden_size=4096,
heads_num=32,
depth=2,
need_CA=False,
device=None,
dtype=torch.bfloat16,
):
super().__init__()
factory_kwargs = {"device": device, "dtype":dtype}
self.S =SingleTokenRefiner(in_channels=in_channels,hidden_size=hidden_size,heads_num=heads_num,depth=depth,need_CA=need_CA,**factory_kwargs)
self.global_proj_out=nn.Linear(in_channels,768)
self.scale_factor = nn.Parameter(torch.zeros(1))
with torch.no_grad():
self.scale_factor.data += -(1 - 0.09)
def forward(self, x,t,mask):
mask_float = mask.unsqueeze(-1) # [b, s1, 1]
x_mean = (x * mask_float).sum(
dim=1
) / mask_float.sum(dim=1) * (1 + self.scale_factor)
global_out=self.global_proj_out(x_mean)
encoder_hidden_states = self.S(x,t,mask)
return encoder_hidden_states,global_out |