File size: 14,821 Bytes
36de41f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b812142
 
 
d2c3bde
 
 
 
 
36de41f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
723b769
36de41f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2c3bde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36de41f
 
b812142
d2c3bde
36de41f
 
 
 
 
 
 
 
d2c3bde
 
 
 
 
36de41f
 
 
 
 
 
 
 
 
 
 
 
 
 
6b3d669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95a8692
6b3d669
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
import argparse
import datetime
import json 
import itertools
import math
import os
import spaces
import time
from pathlib import Path


import gradio as gr
import numpy as np
import torch
from einops import rearrange, repeat
from huggingface_hub import snapshot_download
from PIL import Image, ImageOps
from safetensors.torch import load_file
from torchvision.transforms import functional as F
from tqdm import tqdm 

import sampling
from modules.autoencoder import AutoEncoder
from modules.conditioner import Qwen25VL_7b_Embedder as Qwen2VLEmbedder
from modules.model_edit import Step1XParams, Step1XEdit

print("TORCH_CUDA", torch.cuda.is_available())

def load_state_dict(model, ckpt_path, device="cuda", strict=False, assign=True):
    if Path(ckpt_path).suffix == ".safetensors":
        state_dict = load_file(ckpt_path, device)
    else:
        state_dict = torch.load(ckpt_path, map_location="cpu")

    missing, unexpected = model.load_state_dict(
        state_dict, strict=strict, assign=assign
    )
    if len(missing) > 0 and len(unexpected) > 0:
        print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
        print("\n" + "-" * 79 + "\n")
        print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
    elif len(missing) > 0:
        print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
    elif len(unexpected) > 0:
        print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
    return model


def load_models(
    dit_path=None,
    ae_path=None,
    qwen2vl_model_path=None,
    device="cuda",
    max_length=256,
    dtype=torch.bfloat16,
):
    qwen2vl_encoder = Qwen2VLEmbedder(
        qwen2vl_model_path,
        device=device,
        max_length=max_length,
        dtype=dtype,
    )

    with torch.device("meta"):
        ae = AutoEncoder(
            resolution=256,
            in_channels=3,
            ch=128,
            out_ch=3,
            ch_mult=[1, 2, 4, 4],
            num_res_blocks=2,
            z_channels=16,
            scale_factor=0.3611,
            shift_factor=0.1159,
        )

        step1x_params = Step1XParams(
            in_channels=64,
            out_channels=64,
            vec_in_dim=768,
            context_in_dim=4096,
            hidden_size=3072,
            mlp_ratio=4.0,
            num_heads=24,
            depth=19,
            depth_single_blocks=38,
            axes_dim=[16, 56, 56],
            theta=10_000,
            qkv_bias=True,
        )
        dit = Step1XEdit(step1x_params)

    ae = load_state_dict(ae, ae_path)
    dit = load_state_dict(
        dit, dit_path
    )

    dit = dit.to(device=device, dtype=dtype)
    ae = ae.to(device=device, dtype=torch.float32)

    return ae, dit, qwen2vl_encoder


class ImageGenerator:
    def __init__(
        self,
        dit_path=None,
        ae_path=None,
        qwen2vl_model_path=None,
        device="cuda",
        max_length=640,
        dtype=torch.bfloat16,
    ) -> None:
        self.device = torch.device(device)
        self.ae, self.dit, self.llm_encoder = load_models(
            dit_path=dit_path,
            ae_path=ae_path,
            qwen2vl_model_path=qwen2vl_model_path,
            max_length=max_length,
            dtype=dtype,
        )
        self.ae = self.ae.to(device=self.device, dtype=torch.float32)
        self.dit = self.dit.to(device=self.device, dtype=dtype)
        self.llm_encoder = self.llm_encoder.to(device=self.device, dtype=dtype)
    
    def to_cuda(self):
        self.ae.to(device='cuda', dtype=torch.float32)
        self.dit.to(device='cuda', dtype=torch.bfloat16)
        self.llm_encoder.to(device='cuda', dtype=torch.bfloat16)

    def prepare(self, prompt, img, ref_image, ref_image_raw):
        bs, _, h, w = img.shape
        bs, _, ref_h, ref_w = ref_image.shape

        assert h == ref_h and w == ref_w

        if bs == 1 and not isinstance(prompt, str):
            bs = len(prompt)
        elif bs >= 1 and isinstance(prompt, str):
            prompt = [prompt] * bs

        img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
        ref_img = rearrange(ref_image, "b c (ref_h ph) (ref_w pw) -> b (ref_h ref_w) (c ph pw)", ph=2, pw=2)
        if img.shape[0] == 1 and bs > 1:
            img = repeat(img, "1 ... -> bs ...", bs=bs)
            ref_img = repeat(ref_img, "1 ... -> bs ...", bs=bs)

        img_ids = torch.zeros(h // 2, w // 2, 3)

        img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
        img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
        img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)

        ref_img_ids = torch.zeros(ref_h // 2, ref_w // 2, 3)

        ref_img_ids[..., 1] = ref_img_ids[..., 1] + torch.arange(ref_h // 2)[:, None]
        ref_img_ids[..., 2] = ref_img_ids[..., 2] + torch.arange(ref_w // 2)[None, :]
        ref_img_ids = repeat(ref_img_ids, "ref_h ref_w c -> b (ref_h ref_w) c", b=bs)

        if isinstance(prompt, str):
            prompt = [prompt]

        txt, mask = self.llm_encoder(prompt, ref_image_raw)

        txt_ids = torch.zeros(bs, txt.shape[1], 3)

        img = torch.cat([img, ref_img.to(device=img.device, dtype=img.dtype)], dim=-2)
        img_ids = torch.cat([img_ids, ref_img_ids], dim=-2)


        return {
            "img": img,
            "mask": mask,
            "img_ids": img_ids.to(img.device),
            "llm_embedding": txt.to(img.device),
            "txt_ids": txt_ids.to(img.device),
        }

    @staticmethod
    def process_diff_norm(diff_norm, k):
        pow_result = torch.pow(diff_norm, k)

        result = torch.where(
            diff_norm > 1.0,
            pow_result,
            torch.where(diff_norm < 1.0, torch.ones_like(diff_norm), diff_norm),
        )
        return result

    def denoise(
        self,
        img: torch.Tensor,
        img_ids: torch.Tensor,
        llm_embedding: torch.Tensor,
        txt_ids: torch.Tensor,
        timesteps: list[float],
        cfg_guidance: float = 4.5,
        mask=None,
        show_progress=False,
        timesteps_truncate=1.0,
    ):
        if show_progress:
            pbar = tqdm(itertools.pairwise(timesteps), desc='denoising...')
        else:
            pbar = itertools.pairwise(timesteps)
        for t_curr, t_prev in pbar:
            if img.shape[0] == 1 and cfg_guidance != -1:
                img = torch.cat([img, img], dim=0)
            t_vec = torch.full(
                (img.shape[0],), t_curr, dtype=img.dtype, device=img.device
            )

            txt, vec = self.dit.connector(llm_embedding, t_vec, mask)


            pred = self.dit(
                img=img,
                img_ids=img_ids,
                txt=txt,
                txt_ids=txt_ids,
                y=vec,
                timesteps=t_vec,
            )

            if cfg_guidance != -1:
                cond, uncond = (
                    pred[0 : pred.shape[0] // 2, :],
                    pred[pred.shape[0] // 2 :, :],
                )
                if t_curr > timesteps_truncate:
                    diff = cond - uncond
                    diff_norm = torch.norm(diff, dim=(2), keepdim=True)
                    pred = uncond + cfg_guidance * (
                        cond - uncond
                    ) / self.process_diff_norm(diff_norm, k=0.4)
                else:
                    pred = uncond + cfg_guidance * (cond - uncond)
            tem_img = img[0 : img.shape[0] // 2, :] + (t_prev - t_curr) * pred
            img_input_length = img.shape[1] // 2
            img = torch.cat(
                [
                tem_img[:, :img_input_length],
                img[ : img.shape[0] // 2, img_input_length:],
                ], dim=1
            )

        return img[:, :img.shape[1] // 2]

    @staticmethod
    def unpack(x: torch.Tensor, height: int, width: int) -> torch.Tensor:
        return rearrange(
            x,
            "b (h w) (c ph pw) -> b c (h ph) (w pw)",
            h=math.ceil(height / 16),
            w=math.ceil(width / 16),
            ph=2,
            pw=2,
        )

    @staticmethod
    def load_image(image):
        from PIL import Image

        if isinstance(image, np.ndarray):
            image = torch.from_numpy(image).permute(2, 0, 1).float() / 255.0
            image = image.unsqueeze(0)
            return image
        elif isinstance(image, Image.Image):
            image = F.to_tensor(image.convert("RGB"))
            image = image.unsqueeze(0)
            return image
        elif isinstance(image, torch.Tensor):
            return image
        elif isinstance(image, str):
            image = F.to_tensor(Image.open(image).convert("RGB"))
            image = image.unsqueeze(0)
            return image
        else:
            raise ValueError(f"Unsupported image type: {type(image)}")

    def output_process_image(self, resize_img, image_size):
        res_image = resize_img.resize(image_size)
        return res_image
    
    def input_process_image(self, img, img_size=512):
        # 1. 打开图片
        w, h = img.size
        r = w / h 

        if w > h:
            w_new = math.ceil(math.sqrt(img_size * img_size * r))
            h_new = math.ceil(w_new / r)
        else:
            h_new = math.ceil(math.sqrt(img_size * img_size / r))
            w_new = math.ceil(h_new * r)
        h_new = math.ceil(h_new) // 16 * 16
        w_new = math.ceil(w_new) // 16 * 16

        img_resized = img.resize((w_new, h_new))
        return img_resized, img.size

    @torch.inference_mode()
    def generate_image(
        self,
        prompt,
        negative_prompt,
        ref_images,
        num_steps,
        cfg_guidance,
        seed,
        num_samples=1,
        init_image=None,
        image2image_strength=0.0,
        show_progress=False,
        size_level=512,
    ):
        assert num_samples == 1, "num_samples > 1 is not supported yet."
        ref_images_raw, img_info = self.input_process_image(ref_images, img_size=size_level)
        
        width, height = ref_images_raw.width, ref_images_raw.height


        ref_images_raw = self.load_image(ref_images_raw)
        ref_images_raw = ref_images_raw.to(self.device)
        # print(f'self.ae, self.dit device: {self.ae.device}, {self.dit.device}')
        ref_images = self.ae.encode(ref_images_raw.to(self.device) * 2 - 1)

        seed = int(seed)
        seed = torch.Generator(device="cpu").seed() if seed < 0 else seed

        t0 = time.perf_counter()

        if init_image is not None:
            init_image = self.load_image(init_image)
            init_image = init_image.to(self.device)
            init_image = torch.nn.functional.interpolate(init_image, (height, width))
            init_image = self.ae.encode(init_image.to() * 2 - 1)
        
        x = torch.randn(
            num_samples,
            16,
            height // 8,
            width // 8,
            device=self.device,
            dtype=torch.bfloat16,
            generator=torch.Generator(device=self.device).manual_seed(seed),
        )

        timesteps = sampling.get_schedule(
            num_steps, x.shape[-1] * x.shape[-2] // 4, shift=True
        )

        if init_image is not None:
            t_idx = int((1 - image2image_strength) * num_steps)
            t = timesteps[t_idx]
            timesteps = timesteps[t_idx:]
            x = t * x + (1.0 - t) * init_image.to(x.dtype)

        x = torch.cat([x, x], dim=0)
        ref_images = torch.cat([ref_images, ref_images], dim=0)
        ref_images_raw = torch.cat([ref_images_raw, ref_images_raw], dim=0)
        inputs = self.prepare([prompt, negative_prompt], x, ref_image=ref_images, ref_image_raw=ref_images_raw)

        x = self.denoise(
            **inputs,
            cfg_guidance=cfg_guidance,
            timesteps=timesteps,
            show_progress=show_progress,
            timesteps_truncate=1.0,
        )
        x = self.unpack(x.float(), height, width)
        with torch.autocast(device_type=self.device.type, dtype=torch.bfloat16):
            x = self.ae.decode(x)
            x = x.clamp(-1, 1)
            x = x.mul(0.5).add(0.5)

        t1 = time.perf_counter()
        print(f"Done in {t1 - t0:.1f}s.")
        images_list = []
        for img in x.float():
            images_list.append(self.output_process_image(F.to_pil_image(img), img_info))
        return images_list


# 模型仓库ID(如:"bert-base-uncased")
model_repo = "stepfun-ai/Step1X-Edit"
# 本地保存路径
model_path = "./model_weights"
os.makedirs(model_path, exist_ok=True)


# 下载模型(包括所有文件)
snapshot_download(
    repo_id=model_repo,
    local_dir=model_path,
    local_dir_use_symlinks=False  # 避免使用符号链接
)


image_edit = ImageGenerator(
    ae_path=os.path.join(model_path, 'vae.safetensors'),
    dit_path=os.path.join(model_path, "step1x-edit-i1258.safetensors"),
    qwen2vl_model_path='Qwen/Qwen2.5-VL-7B-Instruct',
    max_length=640,
)



@spaces.GPU(duration=240)
def inference(prompt, ref_images, seed, size_level):
    start_time = time.time()

    if seed == -1:
        import random 
        random_seed = random.randint(0, 2**32 - 1)
    else:
        random_seed = seed

    image_edit.to_cuda()

    inference_func = image_edit.generate_image
    
    image = inference_func(
        prompt,
        negative_prompt="",
        ref_images=ref_images.convert('RGB'),
        num_samples=1,
        num_steps=28,
        cfg_guidance=6.0,
        seed=random_seed,
        show_progress=True,
        size_level=size_level,
    )[0]
    
    print(f"Time taken: {time.time() - start_time:.2f} seconds")
    return image, random_seed

with gr.Blocks() as demo:
    gr.Markdown(
        """
        # Step1X-Edit
        """
    )
    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox(
                label="编辑指令",
                value='Remove the person from the image.',
            )
            init_image = gr.Image(label="Input Image", type='pil')

            random_seed = gr.Number(label="Random Seed", value=-1, minimum=-1)

            size_level = gr.Number(label="size level (recommend 512, 768, 1024, min 512)", value=512, minimum=512)

            generate_btn = gr.Button("Generate")

        with gr.Column():
            output_image = gr.Image(label="Generated Image",type='pil',image_mode='RGB')
            output_random_seed = gr.Textbox(label="Used Seed", lines=5)
    from functools import partial
    generate_btn.click(
        fn=inference,
        inputs=[
            prompt, 
            init_image,
            random_seed,
            size_level,
        ],
        outputs=[output_image, output_random_seed],
    )

demo.launch()