Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
from gradio import ChatMessage | |
import requests # Although not used in dummy tools, keep if future tools need it | |
from typing import Dict, List, Generator, Sequence | |
from langchain_core.messages import HumanMessage, BaseMessage | |
from langchain_core.tools import tool | |
from langchain_openai import ChatOpenAI | |
from langgraph.checkpoint.memory import MemorySaver | |
from langgraph.prebuilt import create_react_agent | |
import logging | |
# Configure logging for better debugging on Spaces | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# --- Tool Definitions --- | |
def get_lat_lng(location_description: str) -> dict[str, float]: | |
"""Get the latitude and longitude of a location description (e.g., 'Paris', 'Tokyo, Japan').""" | |
# In a real app, you'd call a geocoding API here. | |
logger.info(f"Tool 'get_lat_lng' called with location: {location_description}") | |
# Dummy response for demonstration | |
if "london" in location_description.lower(): | |
return {"lat": 51.5074, "lng": -0.1278} | |
elif "tokyo" in location_description.lower(): | |
return {"lat": 35.6895, "lng": 139.6917} | |
elif "paris" in location_description.lower(): | |
return {"lat": 48.8566, "lng": 2.3522} | |
elif "new york" in location_description.lower(): | |
return {"lat": 40.7128, "lng": -74.0060} | |
else: | |
# Default dummy response | |
return {"lat": 51.1, "lng": -0.1} | |
def get_weather(lat: float, lng: float) -> dict[str, str]: | |
"""Get the current weather conditions at a specific latitude and longitude.""" | |
# In a real app, you'd call a weather API (e.g., OpenWeatherMap) here. | |
logger.info(f"Tool 'get_weather' called with lat: {lat}, lng: {lng}") | |
# Dummy response based on latitude for variety | |
if 40 < lat < 50: # Approx Paris/New York | |
return {"temperature": "18°C", "description": "Cloudy"} | |
elif lat > 50: # Approx London | |
return {"temperature": "15°C", "description": "Rainy"} | |
else: # Approx Tokyo / Default | |
return {"temperature": "25°C", "description": "Sunny"} | |
# --- Agent and Streaming Logic --- | |
def initialize_agent(): | |
"""Initializes the LangChain agent.""" | |
api_key = os.getenv("OPENAI_API_KEY") | |
if not api_key: | |
logger.error("OPENAI_API_KEY environment variable not set.") | |
# Option 1: Raise an error to stop the app | |
# raise ValueError("OpenAI API Key not found. Please set it in the Space secrets.") | |
# Option 2: Return None and handle it in the stream function | |
return None | |
try: | |
llm = ChatOpenAI(temperature=0, model="gpt-4", openai_api_key=api_key) | |
# Note: MemorySaver() is in-memory. State will be lost on space restarts/sleeps. | |
# For persistent memory across sessions/restarts, you'd need a persistent checkpointer (e.g., using Redis, SQL). | |
memory = MemorySaver() | |
tools = [get_lat_lng, get_weather] | |
agent_executor = create_react_agent(llm, tools, checkpointer=memory) | |
logger.info("LangChain agent initialized successfully.") | |
return agent_executor | |
except Exception as e: | |
logger.error(f"Failed to initialize LangChain agent: {e}", exc_info=True) | |
return None | |
# Initialize agent once when the script starts | |
agent_executor = initialize_agent() | |
# Define the streaming function for Gradio ChatInterface | |
def stream_from_agent(message: str, history: List[List[str]]) -> Generator[Sequence[ChatMessage], None, None]: | |
""" | |
Processes user messages through the LangChain agent, yielding intermediate steps. | |
Args: | |
message: The user's input message. | |
history: The conversation history provided by Gradio (list of [user, assistant] pairs). | |
Yields: | |
A sequence of Gradio ChatMessage objects representing the agent's thoughts and actions. | |
""" | |
global agent_executor # Use the globally initialized agent | |
if agent_executor is None: | |
error_msg = "Agent initialization failed. Please check the logs and ensure the OPENAI_API_KEY secret is set correctly." | |
yield [ChatMessage(role="assistant", content=error_msg)] | |
return | |
logger.info(f"Received message: {message}") | |
logger.info(f"History: {history}") | |
# Convert Gradio history to LangChain message format | |
# Note: create_react_agent expects a list of BaseMessages under the "messages" key. | |
# It typically works best with a single HumanMessage as input per turn for the ReAct loop. | |
# We will use the memory checkpointer to handle history persistence within the agent's context. | |
langchain_message = HumanMessage(content=message) | |
messages_to_display: List[ChatMessage] = [] | |
final_response_content = "" | |
try: | |
# Note: Using a fixed thread_id means all users share the same memory state if MemorySaver is used. | |
# For isolated user sessions, you'd need a mechanism to generate/retrieve unique thread_ids per user/session. | |
# This often requires integrating with Gradio's state or session management. | |
# For simplicity here, we use a fixed ID as in the original code. | |
thread_id = "shared_weather_thread_123" | |
config = {"configurable": {"thread_id": thread_id}} | |
# Stream the agent's execution steps | |
for chunk in agent_executor.stream({"messages": [langchain_message]}, config=config): | |
logger.debug(f"Agent chunk received: {chunk}") # Use debug level for verbose chunk logging | |
# Check for Agent Actions (Tool Calls) | |
if agent_action := chunk.get("agent"): | |
# Often the agent's rationale or decision to use a tool might be here | |
# Depending on the specific agent type, you might parse agent_action differently | |
if agent_action.get("messages"): | |
for msg in agent_action["messages"]: | |
if hasattr(msg, 'tool_calls') and msg.tool_calls: | |
for tool_call in msg.tool_calls: | |
# Display the tool call intention | |
tool_msg = ChatMessage( | |
role="assistant", # Show tool usage as assistant action | |
content=f"Parameters: `{tool_call['args']}`", | |
metadata={ | |
"title": f"🛠️ Calling Tool: `{tool_call['name']}`", | |
"tool_call_id": tool_call["id"], # Store ID to match response | |
} | |
) | |
messages_to_display.append(tool_msg) | |
yield messages_to_display | |
# Capture potential intermediate reasoning if available (depends on agent/LLM) | |
elif hasattr(msg, 'content') and isinstance(msg.content, str) and msg.content: | |
# Avoid displaying the *final* answer prematurely if it appears mid-stream | |
# The final answer is usually in the last chunk's 'agent' message list | |
pass # We'll handle the final answer specifically later | |
# Check for Tool Execution Results | |
if tool_chunk := chunk.get("tools"): | |
if tool_chunk.get("messages"): | |
for tool_response in tool_chunk["messages"]: | |
# Find the corresponding tool call message to update it | |
found = False | |
for i, msg in enumerate(messages_to_display): | |
if msg.metadata and msg.metadata.get("tool_call_id") == tool_response.tool_call_id: | |
# Update the existing tool message with the result | |
updated_content = msg.content + f"\nResult: `{tool_response.content}`" | |
messages_to_display[i] = ChatMessage( | |
role=msg.role, | |
content=updated_content, | |
metadata=msg.metadata # Keep original metadata | |
) | |
found = True | |
break | |
if found: | |
yield messages_to_display | |
else: | |
# If matching call not found (shouldn't happen often), display separately | |
tool_result_msg = ChatMessage( | |
role="tool", # Or keep as assistant? 'tool' role might not render well by default | |
content=f"Tool Result (`{tool_response.tool_call_id}`): `{tool_response.content}`" | |
) | |
messages_to_display.append(tool_result_msg) | |
yield messages_to_display | |
# Check for the Final Agent Response | |
# The final answer is typically the last message in the 'agent' chunk's list | |
if agent_final := chunk.get("agent"): | |
if agent_final.get("messages"): | |
last_message = agent_final["messages"][-1] | |
# Ensure it's the final response (often not a tool call) | |
if hasattr(last_message, 'content') and not (hasattr(last_message, 'tool_calls') and last_message.tool_calls): | |
final_response_content = last_message.content | |
# After the loop, ensure the final response is added if it hasn't been implicitly handled | |
if final_response_content: | |
# Check if the last displayed message is already the final response | |
is_already_displayed = False | |
if messages_to_display: | |
last_displayed = messages_to_display[-1] | |
# Simple check: if last displayed message has no tool metadata and content matches | |
if not (last_displayed.metadata and "tool_call_id" in last_displayed.metadata) and last_displayed.content == final_response_content: | |
is_already_displayed = True | |
if not is_already_displayed: | |
final_msg = ChatMessage(role="assistant", content=final_response_content) | |
messages_to_display.append(final_msg) | |
yield messages_to_display | |
elif not messages_to_display: | |
# Handle cases where the agent might not produce a final response (e.g., errors) | |
yield [ChatMessage(role="assistant", content="Sorry, I couldn't process that request.")] | |
except Exception as e: | |
logger.error(f"Error during agent stream: {e}", exc_info=True) | |
error_message = f"An error occurred: {e}" | |
yield [ChatMessage(role="assistant", content=error_message)] | |
# --- Gradio Interface Definition --- | |
# Use gr.ChatInterface with type="messages" for full ChatMessage object support | |
demo = gr.ChatInterface( | |
fn=stream_from_agent, | |
chatbot=gr.Chatbot( | |
bubble_full_width=False, | |
show_copy_button=True, | |
render=False # Render manually for better control if needed, but False is fine here | |
), | |
input_components=[gr.Textbox(label="Ask the weather assistant")], # Customize input textbox | |
# `type="messages"` passes message/history using gr.ChatMessage objects (needed for metadata) | |
# However, ChatInterface's standard history format is List[List[str]]. | |
# Let's stick to the standard fn signature for ChatInterface if possible | |
# and convert history inside the function if needed. | |
# Reverting fn signature slightly based on typical ChatInterface usage. | |
# If type="messages" is used, fn signature might expect different types. | |
# Sticking to standard List[List[str]] history for compatibility. | |
# Let's adjust the stream_from_agent function signature slightly if needed. | |
# **Correction**: `gr.ChatInterface` *does* handle the `List[List[str]]` history format even when yielding `ChatMessage`. | |
# The function signature `(message: str, history: List[List[str]])` is correct. | |
title="🌤️ Weather Assistant with LangGraph ReAct Agent", | |
description="Ask about the weather anywhere! Watch the agent think step-by-step as it uses tools.", | |
examples=[ | |
["What's the weather like in Tokyo?"], | |
["Is it sunny in Paris right now?"], | |
["Should I bring an umbrella in New York today?"] | |
], | |
cache_examples=False, # Disable caching for dynamic examples if needed | |
theme="soft", # Optional: Apply a theme | |
retry_btn=None, # Disable retry button if stream handles errors | |
undo_btn="Delete Previous", # Customize undo button text | |
clear_btn="Clear Conversation", # Customize clear button text | |
) | |
# --- Launch the App --- | |
if __name__ == "__main__": | |
# Launch the Gradio app | |
# share=False is default and recommended for Spaces | |
# debug=True can be helpful during development but disable for production | |
# server_name="0.0.0.0" allows access within the Space's network | |
demo.launch(server_name="0.0.0.0", server_port=7860) |