File size: 5,864 Bytes
cd32184
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Copyright 2024 Musab Gultekin and the LlamaFactory team.
#
# This code is based on the Musab Gultekin's functionary library.
# https://github.com/MeetKai/functionary/blob/main/functionary/train/packing/monkey_patch_packing.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# MIT License
#
# Copyright (c) 2023 Musab Gultekin
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

from typing import TYPE_CHECKING, Tuple

import torch
import torch.nn.functional as F
import transformers.models
from transformers.utils.versions import require_version

from ...extras.constants import SUPPORTED_CLASS_FOR_BLOCK_DIAG_ATTN
from ...extras.logging import get_logger


if TYPE_CHECKING:
    from transformers import PretrainedConfig

    from ...hparams import ModelArguments


logger = get_logger(__name__)


def get_seqlens_in_batch(attention_mask: "torch.Tensor") -> "torch.Tensor":
    r"""
    Gets the sequnce lengths in the current batch.

    e.g.
    ```python
    # input
    [
        [1, 1, 2, 2, 2, 0],
        [1, 2, 2, 3, 3, 3],
    ]
    # output
    [2, 3, 1, 2, 3]
    ```
    """
    bsz = attention_mask.size(0)
    dtype, device = attention_mask.dtype, attention_mask.device
    max_num = torch.max(attention_mask).item()
    counts: "torch.Tensor" = torch.zeros((bsz, max_num), dtype=dtype, device=device)
    for i in range(max_num):
        counts[:, i] = torch.sum(attention_mask == (i + 1), dim=-1)

    counts = counts.flatten()
    seqlens = counts[counts.nonzero().squeeze(dim=-1)]
    return seqlens


def get_unpad_data(attention_mask: "torch.Tensor") -> Tuple["torch.Tensor", "torch.Tensor", int]:
    r"""
    Prepares the indices and seqlens for flash attn varlen function.

    Returns:
        indices: indices of non-masked tokens from the flattened sequence.
        cu_seqlens: the cumulative sequence lengths in the current batch, always starts from 0.
        max_seqlen_in_batch: the largest seqlen in the current batch.

    e.g.
    ```python
    # input
    [
        [1, 1, 2, 2, 2, 0],
        [1, 2, 2, 3, 3, 3],
    ]
    # output
    [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11]
    [0, 2, 5, 6, 8, 11]
    3
    ```
    """
    seqlens_in_batch = get_seqlens_in_batch(attention_mask)
    indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
    max_seqlen_in_batch = seqlens_in_batch.max().item()
    cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
    return indices, cu_seqlens, max_seqlen_in_batch


def _patch_for_block_diag_attn(model_type: str) -> None:
    require_version("transformers>=4.41.2,<=4.42.4", "To fix: pip install transformers>=4.41.2,<=4.42.4")
    if model_type == "cohere":
        transformers.models.cohere.modeling_cohere._get_unpad_data = get_unpad_data
    elif model_type == "falcon":
        transformers.models.falcon.modeling_falcon._get_unpad_data = get_unpad_data
    elif model_type == "gemma":
        transformers.models.gemma.modeling_gemma._get_unpad_data = get_unpad_data
    elif model_type == "gemma2":
        transformers.models.gemma2.modeling_gemma2._get_unpad_data = get_unpad_data
    elif model_type == "llama":
        transformers.models.llama.modeling_llama._get_unpad_data = get_unpad_data
    elif model_type == "mistral":
        transformers.models.mistral.modeling_mistral._get_unpad_data = get_unpad_data
    elif model_type == "phi":
        transformers.models.phi.modeling_phi._get_unpad_data = get_unpad_data
    elif model_type == "phi3":
        transformers.models.phi3.modeling_phi3._get_unpad_data = get_unpad_data
    elif model_type == "qwen2":
        transformers.models.qwen2.modeling_qwen2._get_unpad_data = get_unpad_data
    elif model_type == "starcoder2":
        transformers.models.starcoder2.modeling_starcoder2._get_unpad_data = get_unpad_data


def configure_packing(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None:
    if not is_trainable or not model_args.block_diag_attn:
        return

    model_type = getattr(config, "model_type", None)
    if model_type in SUPPORTED_CLASS_FOR_BLOCK_DIAG_ATTN:
        _patch_for_block_diag_attn(model_type)
        logger.info("Using block diagonal attention for sequence packing without cross-attention.")
    else:
        raise ValueError("Current model does not support block diagonal attention.")