File size: 24,296 Bytes
444a581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
import os
import json
import asyncio
import requests
import aiohttp
from prompt import simple_system_prompt, system_prompt_with_2shots
from dotenv import load_dotenv
from tqdm import tqdm
from openai import OpenAI
from anthropic import Anthropic
from together import Together
import concurrent.futures
from functools import partial
import threading
from tqdm import tqdm
import argparse
import time

# Load environment variables
load_dotenv()

MAX_TOKENS = 4

# Define the models and their configurations
models = [
    # {
    #     "name": "Gemini-1.5-Pro",
    #     "config": {
    #         "apiKey": os.getenv("GEMINI_API_KEY"),
    #         "model": "gemini-1.5-pro",
    #         "maxTokens": MAX_TOKENS,
    #         "temperature": 0.0,
    #     },
    #     "type": "gemini"
    # },
    {
        "name": "DEEPSEEK",
        "config": {
            "apiKey": os.getenv("DEEPSEEK_API_KEY"),
            "baseURL": "https://api.deepseek.com",
            "model": "deepseek-chat",
            "maxTokens": MAX_TOKENS,
            "temperature": 0.0,
            "top_p": 0.7,
        },
        "type": "openai"
    },
    {
        "name": "GPT-3.5-Turbo",
        "config": {
            "apiKey": os.getenv("OPENAI_API_KEY"),
            "baseURL": "https://api.openai.com/v1",
            "model": "gpt-3.5-turbo",
            "maxTokens": MAX_TOKENS,
            "temperature": 0.0,
            "top_p": 0.7,
        },
        "type": "openai"
    },
    # {
    #     "name": "Kimi-Chat",
    #     "config": {
    #         "apiKey": os.getenv("MOONSHOT_API_KEY"),
    #         "baseURL": "https://api.moonshot.cn/v1",
    #         "model": "moonshot-v1-8k",
    #         "maxTokens": MAX_TOKENS,
    #         "temperature": 0.0,
    #         "top_p": 0.7,
    #     },
    #     "type": "openai"
    # },
    {
        "name": "GPT-4o",
        "config": {
            "apiKey": os.getenv("OPENAI_API_KEY"),
            "baseURL": "https://api.openai.com/v1",
            "model": "gpt-4o-2024-05-13",
            "maxTokens": MAX_TOKENS,
            "temperature": 0.0,
            "top_p": 0.7,
        },
        "type": "openai"
    },
    {
        "name": "GPT-4o-mini",
        "config": {
            "apiKey": os.getenv("OPENAI_API_KEY"),
            "baseURL": "https://api.openai.com/v1",
            "model": "gpt-4o-mini",
            "maxTokens": MAX_TOKENS,
            "temperature": 0.0,
            "top_p": 0.7,
        },
        "type": "openai"
    },
    {
        "name": "Llama-3.1-405b",
        "config": {
            "apiKey": os.getenv("TOGETHER_API_KEY"),
            "model": "meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo",
            "maxTokens": MAX_TOKENS,
            "temperature": 0.0,
            "top_p": 0.7,
            "stop": ["<|eot_id|>"]
        },
        "type": "together"
    },
    {
        "name": "Llama3.1-70b",
        "config": {
            "apiKey": os.getenv("TOGETHER_API_KEY"),
            "model": "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo",
            "maxTokens": MAX_TOKENS,
            "temperature": 0.0,
            "top_p": 0.7,
            "stop": ["<|eot_id|>"]
        },
        "type": "together"
    },
    {
        "name": "Qwen2-72B-Instruct",
        "config": {
            "apiKey": os.getenv("TOGETHER_API_KEY"),
            "model": "Qwen/Qwen2-72B-Instruct",
            "maxTokens": MAX_TOKENS,
            "temperature": 0.0,
            "top_p": 0.7,
            "stop": ["<|im_start|>", "<|im_end|>"]
        },
        "type": "together"
    },
    # {
    #     "name": "Yi-34B-Chat",
    #     "config": {
    #         "apiKey": os.getenv("TOGETHER_API_KEY"),
    #         "model": "zero-one-ai/Yi-34B-Chat",
    #         "maxTokens": MAX_TOKENS,
    #         "temperature": 0.0,
    #         "top_p": 0.7,
    #         "stop": ["<|im_start|>", "<|im_end|>"]
    #     },
    #     "type": "together"
    # },
    # {
    #     "name": "Doubao-4k",
    #     "config": {
    #         "apiKey": os.getenv("DOUBAO_API_KEY"),
    #         "baseURL": "https://ark.cn-beijing.volces.com/api/v3",
    #         "model": "ep-20240802142948-6vvc7",  # Replace with the actual endpoint ID if different
    #         "maxTokens": MAX_TOKENS,
    #         "temperature": 0.0,
    #         "top_p": 0.7
    #     },
    #     "type": "openai"
    # },
    {
        "name": "Claude-3.5-Sonnet",
        "config": {
            "apiKey": os.getenv("ANTHROPIC_API_KEY"),
            "model": "claude-3-5-sonnet-20240620",
            "maxTokens": MAX_TOKENS,
            "temperature": 0.0,
        },
        "type": "anthropic"
    },
    # {
    #     "name": "Claude-3-Opus",
    #     "config": {
    #         "apiKey": os.getenv("ANTHROPIC_API_KEY"),
    #         "model": "claude-3-opus-20240229",
    #         "maxTokens": MAX_TOKENS,
    #         "temperature": 0.0,
    #     },
    #     "type": "anthropic"
    # },
    {
        "name": "Claude-3-Haiku",
        "config": {
            "apiKey": os.getenv("ANTHROPIC_API_KEY"),
            "model": "claude-3-haiku-20240307",
            "maxTokens": MAX_TOKENS,
            "temperature": 0.0,
        },
        "type": "anthropic"
    },
    # {
    #     "name": "MiniMax-ABAB6.5s",
    #     "config": {
    #         "groupId": os.getenv("MINIMAX_GROUP_ID"),
    #         "apiKey": os.getenv("MINIMAX_API_KEY"),
    #         "model": "abab6.5s-chat",
    #         "maxTokens": MAX_TOKENS,
    #         "temperature": 0.01, # must be (0, 1]
    #         "top_p": 1
    #     },
    #     "type": "minimax"
    # },
]

# Load stories
with open("data/stories.json", "r", encoding="utf-8") as f:
    stories = json.load(f)

def load_test_cases(filename):
    with open(filename, "r", encoding="utf-8") as f:
        _test_cases = []
        for line in f:
            parts = line.strip().split("	|	")
            if len(parts) != 3:
                print(f"Invalid test case: {line}")
                continue
            if parts[2] not in ["Correct", "Incorrect", "Unknown"]:
                print(f"Skipping line with invalid ground truth: {line}")
                continue
            _test_cases.append(parts)
        
        print("Total", len(_test_cases), "test cases loaded")
        return _test_cases

def starts_with_answer(response, answer):
    return response.strip().lower().startswith(answer)

def call_api(model, prompt, user_input):
    try:
        if model["type"] == "openai":
            if model["name"] == "Doubao-4k":
                client = OpenAI(
                    api_key=model["config"]["apiKey"],
                    base_url=model["config"]["baseURL"]
                )
                
                messages = [
                    {"role": "system", "content": prompt},
                    {"role": "user", "content": user_input}
                ]
                
                response = client.chat.completions.create(
                    model=model["config"]["model"],
                    messages=messages,
                    max_tokens=model["config"]["maxTokens"],
                    temperature=model["config"]["temperature"],
                    top_p=model["config"]["top_p"],
                    stream=False
                )
                
                return response.choices[0].message.content
            else:
                url = model["config"]["baseURL"] + "/chat/completions"
                headers = {
                    "Content-Type": "application/json",
                    "Authorization": f"Bearer {model['config']['apiKey']}"
                }
                data = {
                    "model": model["config"]["model"],
                    "messages": [
                        {"role": "system", "content": prompt},
                        {"role": "user", "content": user_input}
                    ],
                    "max_tokens": model["config"]["maxTokens"],
                    "temperature": model["config"]["temperature"],
                }
                
                if "top_p" in model["config"]:
                    data["top_p"] = model["config"]["top_p"]

                response = requests.post(url, headers=headers, json=data)
                if response.status_code != 200:
                    raise Exception(f"API call failed with status {response.status_code}: {response.text}")
                result = response.json()
                return result["choices"][0]["message"]["content"]
        
        elif model["type"] == "together":
            client = Together(api_key=model["config"]["apiKey"])
            
            messages = [
                {"role": "system", "content": prompt},
                {"role": "user", "content": user_input}
            ]
            
            response = client.chat.completions.create(
                model=model["config"]["model"],
                messages=messages,
                max_tokens=model["config"]["maxTokens"],
                temperature=model["config"]["temperature"],
                top_p=model["config"]["top_p"],
                stop=model["config"]["stop"],
                stream=False
            )
            
            return response.choices[0].message.content

        elif model["type"] == "anthropic":
            client = Anthropic(api_key=model["config"]["apiKey"])
            
            message = client.messages.create(
                model=model["config"]["model"],
                max_tokens=model["config"]["maxTokens"],
                temperature=model["config"]["temperature"],
                system=prompt,
                messages=[
                    {
                        "role": "user",
                        "content": [
                            {
                                "type": "text",
                                "text": user_input
                            }
                        ]
                    }
                ]
            )
            
            return message.content[0].text

        elif model["type"] == "minimax":
            url = f"https://api.minimax.chat/v1/text/chatcompletion_v2?GroupId={model['config']['groupId']}"
            headers = {
                "Authorization": f"Bearer {model['config']['apiKey']}",
                "Content-Type": "application/json"
            }
            
            payload = {
                "model": model["config"]["model"],
                "messages": [
                    {
                        "role": "system",
                        "name": "MM智能助理",
                        "content": prompt
                    },
                    {
                        "role": "user",
                        "content": user_input
                    }
                ],
                "tools": [],
                "tool_choice": "none",
                "stream": False,
                "max_tokens": model["config"]["maxTokens"],
                "temperature": model["config"]["temperature"],
                "top_p": model["config"]["top_p"]
            }
            
            response = requests.post(url, headers=headers, json=payload)
            if response.status_code != 200:
                raise Exception(f"API call failed with status {response.status_code}: {response.text}")
            
            result = response.json()
            return result["choices"][0]["message"]["content"]
        
        elif model["type"] == "gemini":
            import google.generativeai as genai
            
            genai.configure(api_key=model["config"]["apiKey"])
            
            generation_config = {
                "temperature": model["config"]["temperature"],
                "max_output_tokens": model["config"]["maxTokens"],
                "top_p": 0.7,
                # "top_k": 64,
            }
            
            gemini_model = genai.GenerativeModel(
                model_name=model["config"]["model"],
                generation_config=generation_config,
            )
            
            chat_session = gemini_model.start_chat(history=[])
            
            # Combine prompt and user_input
            full_prompt = f"{prompt}\n\nUser: {user_input}\nAssistant:"
            
            response = chat_session.send_message(full_prompt)
            
            return response.text
        
        else:
            raise ValueError(f"Unsupported model type: {model['type']}")
    except Exception as e:
        print(f"Error in call_api for model {model['name']}: {str(e)}")
        return None

def call_api_with_timeout_and_timing(model, prompt, user_input, timeout=20):
    start_time = time.time()
    try:
        result = call_api(model, prompt, user_input)
        elapsed_time = time.time() - start_time
        return result, elapsed_time
    except Exception as e:
        elapsed_time = time.time() - start_time
        print(f"Error in call_api for model {model['name']}: {str(e)}")
        return None, elapsed_time

def evaluate_models(models, test_cases, stories, shot_type):
    results = {model['name']: {'correct': 0, 'total': 0} for model in models}
    logs = {model['name']: [] for model in models}
    challenging_cases = []
    all_cases = []
    time_logs = []

    log_folder = f"logs_with_{shot_type}shots"
    os.makedirs(log_folder, exist_ok=True)

    # Find the last tested sample
    last_tested = 0
    for i in range(len(test_cases), 0, -1):
        if os.path.exists(f"{log_folder}/all_cases_simple_prompt_{i}.json"):
            with open(f"{log_folder}/all_cases_simple_prompt_{i}.json", "r", encoding="utf-8") as f:
                all_cases = json.load(f)
            last_tested = i
            break

    # Update results with previously tested samples
    for case in all_cases:
        for model_name, result in case['results'].items():
            if result is not None:
                results[model_name]['total'] += 1
                if (case['ground_truth'] == "Correct" and result == "Correct") or \
                   ((case['ground_truth'] == "Incorrect" or case['ground_truth'] == "Unknown") and result != "Correct"):
                    results[model_name]['correct'] += 1

    # Start from the next untested sample
    start_index = len(all_cases)

    for i, (user_input, story_title, ground_truth) in enumerate(tqdm(test_cases[start_index:]), start_index + 1):
        try:
            story = next((s for s in stories if s["title"] == story_title), None)
            if not story:
                print(f"Story not found: {story_title}")
                continue

            # Use the appropriate prompt based on shot_type
            if shot_type == "2":
                prompt_template = system_prompt_with_2shots
            else:
                prompt_template = simple_system_prompt

            prompt = prompt_template.replace("{surface}", story["surface"]).replace("{bottom}", story["bottom"])
            gt_map = {"correct": "correct", "incorrect": "incorrect", "unknown": "unknown"}

            case_results = {}
            all_responses_valid = True
            time_usage = {}

            # Use ThreadPoolExecutor for concurrent API calls
            with concurrent.futures.ThreadPoolExecutor(max_workers=len(models)) as executor:
                future_to_model = {executor.submit(partial(call_api_with_timeout_and_timing, timeout=20), model, prompt, user_input): model for model in models}
                for future in concurrent.futures.as_completed(future_to_model):
                    model = future_to_model[future]
                    try:
                        response, elapsed_time = future.result()
                        time_usage[model['name']] = elapsed_time
                        if response is None:
                            all_responses_valid = False
                            print(f"Timeout or error for model {model['name']}")
                        else:
                            case_results[model['name']] = response
                    except Exception as exc:
                        print(f'{model["name"]} generated an exception: {exc}')
                        all_responses_valid = False

            # If any model timed out or had an error, skip this entire test case
            if not all_responses_valid:
                print(f"Skipping test case {i} due to timeout or error")
                continue

            # Process all responses
            for model in models:
                if model['name'] not in case_results:
                    continue
                response = case_results[model['name']].strip().lower()

                if starts_with_answer(response, "correct") or starts_with_answer(response, "incorrect") or starts_with_answer(response, "unknown"):
                    results[model['name']]['total'] += 1
                    
                    # Save the actual model output
                    if starts_with_answer(response, "correct"):
                        case_results[model['name']] = "Correct"
                    elif starts_with_answer(response, "incorrect"):
                        case_results[model['name']] = "Incorrect"
                    else:
                        case_results[model['name']] = "Unknown"
                    
                    # Calculate accuracy (merging N and F)
                    if (ground_truth.lower() == "correct" and case_results[model['name']].lower() == "correct") or \
                       ((ground_truth.lower() == "incorrect" or ground_truth.lower() == "unknown") and case_results[model['name']].lower() != "correct"):
                        results[model['name']]['correct'] += 1
                    else:
                        # Print only wrong answers
                        print(f"Wrong Answer - Model: {model['name']}, Input: {user_input}, Response: {response}, GT: {ground_truth.lower()}, Model Output: {case_results[model['name']]}")
                else:
                    # Handle invalid responses
                    case_results[model['name']] = "Invalid"
                    print(f"Invalid Response - Model: {model['name']}, Input: {user_input}, Response: {response}, GT: {ground_truth.lower()}, Model Output: {case_results[model['name']]}")

                log_entry = {
                    "Input": user_input,
                    "Response": response,
                    "GT": ground_truth,
                    "Model_Output": case_results[model['name']],
                    "Accuracy": f"{results[model['name']]['correct']}/{results[model['name']]['total']} ({results[model['name']]['correct']/max(results[model['name']]['total'], 1):.2f})"
                }
                logs[model['name']].append(log_entry)

            case = {
                "input": user_input,
                "story_title": story_title,
                "ground_truth": ground_truth,
                "results": case_results,
                "time_usage": time_usage
            }

            all_cases.append(case)
            time_logs.append({"sample": i, "time_usage": time_usage})

            # Print time usage for this sample
            print(f"\nTime usage for sample {i}:")
            for model_name, elapsed_time in sorted(time_usage.items(), key=lambda x: x[1], reverse=True):
                print(f"{model_name}: {elapsed_time:.2f} seconds")

            # Save log and print accuracy ranking every 10 steps
            if i % 10 == 0 or i == len(test_cases):
                print(f"\nCurrent rankings after {i} items:")
                current_results = [(name, res['correct'] / max(res['total'], 1), res['correct'], res['total']) 
                                for name, res in results.items()]
                current_results.sort(key=lambda x: x[1], reverse=True)
                
                for rank, (name, accuracy, correct, total) in enumerate(current_results, 1):
                    print(f"{rank}. {name}: {accuracy:.2f} ({correct}/{total})")

                # Update challenging cases file
                with open(f"{log_folder}/challenging_cases_simple_prompt_{i}.json", "w", encoding="utf-8") as f:
                    json.dump(challenging_cases, f, ensure_ascii=False, indent=2)

                # Update all cases file
                with open(f"{log_folder}/all_cases_simple_prompt_{i}.json", "w", encoding="utf-8") as f:
                    json.dump(all_cases, f, ensure_ascii=False, indent=2)

                # Save time logs
                with open(f"{log_folder}/time_logs_{i}.json", "w", encoding="utf-8") as f:
                    json.dump(time_logs, f, ensure_ascii=False, indent=2)

        except Exception as e:
            print(f"Error processing test case {i}: {str(e)}")
            continue

    # Final update to challenging cases file
    final_index = start_index + len(test_cases[start_index:])
    with open(f"{log_folder}/challenging_cases_simple_prompt_{final_index}.json", "w", encoding="utf-8") as f:
        json.dump(challenging_cases, f, ensure_ascii=False, indent=2)

    # Final update to all cases file
    with open(f"{log_folder}/all_cases_simple_prompt_{final_index}.json", "w", encoding="utf-8") as f:
        json.dump(all_cases, f, ensure_ascii=False, indent=2)

    return results, challenging_cases, all_cases, time_logs

def save_all_cases(all_cases, output_file):
    with open(output_file, "w", encoding="utf-8") as f:
        json.dump(all_cases, f, ensure_ascii=False, indent=2)
    
    print(f"All cases have been saved to {output_file}")

def parse_challenging_cases(input_file, output_file):
    with open(input_file, 'r', encoding='utf-8') as f:
        challenging_cases = json.load(f)

    with open(output_file, 'w', encoding='utf-8') as f:
        for case in challenging_cases:
            user_input = case['input']
            story_title = case['story_title']
            ground_truth = case['ground_truth']
            f.write(f"{user_input}\t{story_title}\t{ground_truth}\n")

    print(f"Parsed challenging cases have been written to {output_file}")

def main():
    # Parse command line arguments
    parser = argparse.ArgumentParser(description="Run story understanding evaluation")
    parser.add_argument("--shot", choices=["0", "2"], default="2", help="Number of shots (0 or 2)")
    args = parser.parse_args()

    test_cases = load_test_cases("data/cases.list")
    results, challenging_cases, all_cases, time_logs = evaluate_models(models, test_cases, stories, args.shot)

    final_results = [(name, res['correct'] / max(res['total'], 1), res['correct'], res['total']) 
                     for name, res in results.items()]
    final_results.sort(key=lambda x: x[1], reverse=True)
    
    print(f"\nFinal Rankings ({args.shot}-shot):")
    for rank, (name, accuracy, correct, total) in enumerate(final_results, 1):
        print(f"{rank}. {name}: {accuracy:.2f} ({correct}/{total})")

    print(f"Evaluation complete. Logs have been saved in the '{log_folder}' directory.")

    # Analyze and print overall time usage statistics
    model_total_time = {model['name']: 0 for model in models}
    model_call_count = {model['name']: 0 for model in models}

    for log in time_logs:
        for model_name, time_used in log['time_usage'].items():
            model_total_time[model_name] += time_used
            model_call_count[model_name] += 1

    print("\nOverall Time Usage Statistics:")
    for model_name in sorted(model_total_time, key=lambda x: model_total_time[x], reverse=True):
        avg_time = model_total_time[model_name] / model_call_count[model_name] if model_call_count[model_name] > 0 else 0
        print(f"{model_name}: Total time: {model_total_time[model_name]:.2f}s, Avg time per call: {avg_time:.2f}s")

    # Save overall time usage statistics
    log_folder = f"logs_with_{args.shot}shots"
    with open(f"{log_folder}/overall_time_usage.json", "w", encoding="utf-8") as f:
        json.dump({
            "model_total_time": model_total_time,
            "model_call_count": model_call_count,
            "model_avg_time": {name: model_total_time[name] / count if count > 0 else 0 
                               for name, count in model_call_count.items()}
        }, f, ensure_ascii=False, indent=2)

if __name__ == "__main__":
    main()