Spaces:
Build error
Build error
File size: 15,878 Bytes
444a581 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
import argparse
import concurrent.futures
import json
import os
import random
from functools import partial
import requests
from anthropic import Anthropic
from openai import OpenAI
from together import Together
from tqdm import tqdm
from model_configs import models
from prompt import simple_system_prompt, system_prompt_with_2shots
# Load stories
with open("data/stories.json", "r", encoding="utf-8") as f:
stories = json.load(f)
def load_test_cases(filename):
with open(filename, "r", encoding="utf-8") as f:
_test_cases = []
for line in f:
parts = line.strip().replace(" ", "").split("\t")
if len(parts) != 3:
print(f"Invalid test case: {line}")
continue
if parts[2] not in ["T", "F", "N"]:
print(f"Skipping line with invalid ground truth: {line}")
continue
_test_cases.append(parts)
return _test_cases
def starts_with_answer(response, answer):
return response.strip().lower().startswith(answer)
def call_api(model, prompt, user_input):
try:
if model["type"] == "openai":
if model["name"] == "Doubao-4k":
client = OpenAI(
api_key=model["config"]["apiKey"],
base_url=model["config"]["baseURL"]
)
messages = [
{"role": "system", "content": prompt},
{"role": "user", "content": user_input}
]
response = client.chat.completions.create(
model=model["config"]["model"],
messages=messages,
max_tokens=model["config"]["maxTokens"],
temperature=model["config"]["temperature"],
top_p=model["config"]["top_p"],
stream=False
)
return response.choices[0].message.content
else:
url = model["config"]["baseURL"] + "/chat/completions"
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {model['config']['apiKey']}"
}
data = {
"model": model["config"]["model"],
"messages": [
{"role": "system", "content": prompt},
{"role": "user", "content": user_input}
],
"max_tokens": model["config"]["maxTokens"],
"temperature": model["config"]["temperature"],
}
if "top_p" in model["config"]:
data["top_p"] = model["config"]["top_p"]
response = requests.post(url, headers=headers, json=data)
if response.status_code != 200:
raise Exception(f"API call failed with status {response.status_code}: {response.text}")
result = response.json()
return result["choices"][0]["message"]["content"]
elif model["type"] == "together":
client = Together(api_key=model["config"]["apiKey"])
messages = [
{"role": "system", "content": prompt},
{"role": "user", "content": user_input}
]
response = client.chat.completions.create(
model=model["config"]["model"],
messages=messages,
max_tokens=model["config"]["maxTokens"],
temperature=model["config"]["temperature"],
top_p=model["config"]["top_p"],
repetition_penalty=model["config"]["repetition_penalty"],
stop=model["config"]["stop"],
stream=False
)
return response.choices[0].message.content
elif model["type"] == "anthropic":
client = Anthropic(api_key=model["config"]["apiKey"])
message = client.messages.create(
model=model["config"]["model"],
max_tokens=model["config"]["maxTokens"],
temperature=model["config"]["temperature"],
system=prompt,
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": user_input
}
]
}
]
)
return message.content[0].text
elif model["type"] == "minimax":
url = f"https://api.minimax.chat/v1/text/chatcompletion_v2?GroupId={model['config']['groupId']}"
headers = {
"Authorization": f"Bearer {model['config']['apiKey']}",
"Content-Type": "application/json"
}
payload = {
"model": model["config"]["model"],
"messages": [
{
"role": "system",
"name": "MM智能助理",
"content": prompt
},
{
"role": "user",
"content": user_input
}
],
"tools": [],
"tool_choice": "none",
"stream": False,
"max_tokens": model["config"]["maxTokens"],
"temperature": model["config"]["temperature"],
"top_p": model["config"]["top_p"]
}
response = requests.post(url, headers=headers, json=payload)
if response.status_code != 200:
raise Exception(f"API call failed with status {response.status_code}: {response.text}")
result = response.json()
return result["choices"][0]["message"]["content"]
else:
raise ValueError(f"Unsupported model type: {model['type']}")
except Exception as e:
print(f"Error in call_api for model {model['name']}: {str(e)}")
return None
def call_api_with_timeout(model, prompt, user_input, timeout=20):
try:
return call_api(model, prompt, user_input)
except Exception as e:
print(f"Error in call_api for model {model['name']}: {str(e)}")
return None
def evaluate_models(models, test_cases, stories, shot_type):
results = {model['name']: {'correct': 0, 'total': 0} for model in models}
logs = {model['name']: [] for model in models}
challenging_cases = []
all_cases = []
# Determine the appropriate log folder based on shot_type
log_folder = f"logs_with_{shot_type}shots"
os.makedirs(log_folder, exist_ok=True)
# Find the last tested sample
last_tested = 0
for i in range(len(test_cases), 0, -1):
if os.path.exists(f"{log_folder}/all_cases_simple_prompt_{i}.json"):
with open(f"{log_folder}/all_cases_simple_prompt_{i}.json", "r", encoding="utf-8") as f:
all_cases = json.load(f)
last_tested = i
break
# Update results with previously tested samples
for case in all_cases:
for model_name, result in case['results'].items():
if result is not None:
results[model_name]['total'] += 1
if (case['ground_truth'] == "T" and result == "T") or \
((case['ground_truth'] == "F" or case['ground_truth'] == "N") and result != "T"):
results[model_name]['correct'] += 1
# Start from the next untested sample
start_index = len(all_cases)
for i, (user_input, story_title, ground_truth) in enumerate(tqdm(test_cases[start_index:]), start_index + 1):
try:
story = next((s for s in stories if s["title"] == story_title), None)
if not story:
print(f"Story not found: {story_title}")
continue
# Use the appropriate prompt based on shot_type
if shot_type == "2":
prompt_template = system_prompt_with_2shots
else:
prompt_template = simple_system_prompt
prompt = prompt_template.replace("{surface}", story["surface"]).replace("{bottom}", story["bottom"])
gt_map = {"T": "对", "F": "错", "N": "不知道"}
case_results = {}
all_responses_valid = True
# Use ThreadPoolExecutor for concurrent API calls
with concurrent.futures.ThreadPoolExecutor(max_workers=len(models)) as executor:
future_to_model = {executor.submit(partial(call_api_with_timeout, timeout=20), model, prompt, user_input): model for model in models}
for future in concurrent.futures.as_completed(future_to_model):
model = future_to_model[future]
try:
response = future.result()
if response is None:
all_responses_valid = False
print(f"Timeout or error for model {model['name']}")
else:
case_results[model['name']] = response
except Exception as exc:
print(f'{model["name"]} generated an exception: {exc}')
all_responses_valid = False
# If any model timed out or had an error, skip this entire test case
if not all_responses_valid:
print(f"Skipping test case {i} due to timeout or error")
continue
# Process all responses
for model in models:
if model['name'] not in case_results:
continue
response = case_results[model['name']].strip().lower()
if starts_with_answer(response, "对") or starts_with_answer(response, "错") or starts_with_answer(response, "不知道"):
results[model['name']]['total'] += 1
# Save the actual model output
if starts_with_answer(response, "对"):
case_results[model['name']] = "T"
elif starts_with_answer(response, "错"):
case_results[model['name']] = "F"
else:
case_results[model['name']] = "N"
# Calculate accuracy (merging N and F)
if (ground_truth == "T" and case_results[model['name']] == "T") or \
((ground_truth == "F" or ground_truth == "N") and case_results[model['name']] != "T"):
results[model['name']]['correct'] += 1
else:
# Print only wrong answers
print(f"Wrong Answer - Model: {model['name']}, Input: {user_input}, Response: {response}, GT: {gt_map[ground_truth]}, Model Output: {case_results[model['name']]}")
else:
# Handle invalid responses
case_results[model['name']] = "Invalid"
print(f"Invalid Response - Model: {model['name']}, Input: {user_input}, Response: {response}, GT: {gt_map[ground_truth]}, Model Output: {case_results[model['name']]}")
log_entry = {
"Input": user_input,
"Response": response,
"GT": gt_map[ground_truth],
"Model_Output": case_results[model['name']],
"Accuracy": f"{results[model['name']]['correct']}/{results[model['name']]['total']} ({results[model['name']]['correct']/max(results[model['name']]['total'], 1):.2f})"
}
logs[model['name']].append(log_entry)
case = {
"input": user_input,
"story_title": story_title,
"ground_truth": ground_truth,
"results": case_results
}
all_cases.append(case)
if any(result != "T" for result in case_results.values()):
challenging_cases.append(case)
# Save log and print accuracy ranking every 10 steps
if i % 10 == 0 or i == len(test_cases):
print(f"\nCurrent rankings after {i} items:")
current_results = [(name, res['correct'] / max(res['total'], 1), res['correct'], res['total'])
for name, res in results.items()]
current_results.sort(key=lambda x: x[1], reverse=True)
for rank, (name, accuracy, correct, total) in enumerate(current_results, 1):
print(f"{rank}. {name}: {accuracy:.2f} ({correct}/{total})")
# Update challenging cases file
with open(f"{log_folder}/challenging_cases_simple_prompt_{i}.json", "w", encoding="utf-8") as f:
json.dump(challenging_cases, f, ensure_ascii=False, indent=2)
# Update all cases file
with open(f"{log_folder}/all_cases_simple_prompt_{i}.json", "w", encoding="utf-8") as f:
json.dump(all_cases, f, ensure_ascii=False, indent=2)
except Exception as e:
print(f"Error processing test case {i}: {str(e)}")
continue
# Final update to challenging cases file
final_index = start_index + len(test_cases[start_index:])
with open(f"{log_folder}/challenging_cases_simple_prompt_{final_index}.json", "w", encoding="utf-8") as f:
json.dump(challenging_cases, f, ensure_ascii=False, indent=2)
# Final update to all cases file
with open(f"{log_folder}/all_cases_simple_prompt_{final_index}.json", "w", encoding="utf-8") as f:
json.dump(all_cases, f, ensure_ascii=False, indent=2)
return results, challenging_cases, all_cases
def save_all_cases(all_cases, output_file):
with open(output_file, "w", encoding="utf-8") as f:
json.dump(all_cases, f, ensure_ascii=False, indent=2)
print(f"All cases have been saved to {output_file}")
def parse_challenging_cases(input_file, output_file):
with open(input_file, 'r', encoding='utf-8') as f:
challenging_cases = json.load(f)
with open(output_file, 'w', encoding='utf-8') as f:
for case in challenging_cases:
user_input = case['input']
story_title = case['story_title']
ground_truth = case['ground_truth']
f.write(f"{user_input}\t{story_title}\t{ground_truth}\n")
print(f"Parsed challenging cases have been written to {output_file}")
def main():
# Parse command line arguments
parser = argparse.ArgumentParser(description="Run story understanding evaluation")
parser.add_argument("--shot", choices=["0", "2"], default="2", help="Number of shots (0 or 2)")
args = parser.parse_args()
_models = [model for model in models if model['name'] in ['DEEPSEEK', 'Kimi-Chat', 'GPT-4o-mini']]
test_cases = load_test_cases("data/cases.list")
_test_cases = random.sample(test_cases, k=100)
results, challenging_cases, all_cases = evaluate_models(_models, _test_cases, stories, args.shot)
final_results = [(name, res['correct'] / max(res['total'], 1), res['correct'], res['total'])
for name, res in results.items()]
final_results.sort(key=lambda x: x[1], reverse=True)
print(f"\nFinal Rankings ({args.shot}-shot):")
for rank, (name, accuracy, correct, total) in enumerate(final_results, 1):
print(f"{rank}. {name}: {accuracy:.2f} ({correct}/{total})")
log_folder = f"logs_with_{args.shot}shots"
print(f"Evaluation complete. Logs have been saved in the '{log_folder}' directory.")
if __name__ == "__main__":
main()
|