Update synthetic_generator.py
Browse files- synthetic_generator.py +69 -69
synthetic_generator.py
CHANGED
@@ -1,69 +1,69 @@
|
|
1 |
-
import pandas as pd
|
2 |
-
from ctgan import CTGAN
|
3 |
-
from sklearn.preprocessing import LabelEncoder
|
4 |
-
import os
|
5 |
-
import json
|
6 |
-
import requests
|
7 |
-
|
8 |
-
def train_and_generate_synthetic(real_data, schema, output_path):
|
9 |
-
"""Trains a CTGAN model and generates synthetic data."""
|
10 |
-
categorical_cols = [col for col, dtype in zip(schema['columns'], schema['types']) if dtype == 'string']
|
11 |
-
|
12 |
-
# Store label encoders
|
13 |
-
label_encoders = {}
|
14 |
-
for col in categorical_cols:
|
15 |
-
le = LabelEncoder()
|
16 |
-
real_data[col] = le.fit_transform(real_data[col])
|
17 |
-
label_encoders[col] = le
|
18 |
-
|
19 |
-
# Train CTGAN
|
20 |
-
gan = CTGAN(epochs=300)
|
21 |
-
gan.fit(real_data, categorical_cols)
|
22 |
-
|
23 |
-
# Generate synthetic data
|
24 |
-
synthetic_data = gan.sample(schema['size'])
|
25 |
-
|
26 |
-
# Decode categorical columns
|
27 |
-
for col in categorical_cols:
|
28 |
-
synthetic_data[col] = label_encoders[col].inverse_transform(synthetic_data[col])
|
29 |
-
|
30 |
-
# Save to CSV
|
31 |
-
os.makedirs('outputs', exist_ok=True)
|
32 |
-
synthetic_data.to_csv(output_path, index=False)
|
33 |
-
print(f"β
Synthetic data saved to {output_path}")
|
34 |
-
|
35 |
-
def generate_schema(prompt):
|
36 |
-
"""Fetches schema from an external API and validates JSON."""
|
37 |
-
API_URL = "https://
|
38 |
-
headers = {"Authorization": f"Bearer
|
39 |
-
|
40 |
-
try:
|
41 |
-
response = requests.post(API_URL, json={"prompt": prompt}, headers=headers)
|
42 |
-
print("π Raw API Response:", response.text) # Debugging line
|
43 |
-
|
44 |
-
schema = response.json()
|
45 |
-
|
46 |
-
# Validate required keys
|
47 |
-
if 'columns' not in schema or 'types' not in schema or 'size' not in schema:
|
48 |
-
raise ValueError("β Invalid schema format! Expected keys: 'columns', 'types', 'size'")
|
49 |
-
|
50 |
-
print("β
Valid Schema Received:", schema) # Debugging line
|
51 |
-
return schema
|
52 |
-
|
53 |
-
except json.JSONDecodeError:
|
54 |
-
print("β Failed to parse JSON response. API might be down or returning non-JSON data.")
|
55 |
-
return None
|
56 |
-
except requests.exceptions.RequestException as e:
|
57 |
-
print(f"β API request failed: {e}")
|
58 |
-
return None
|
59 |
-
|
60 |
-
def fetch_data(domain):
|
61 |
-
"""Fetches real data for the given domain and ensures it's a valid DataFrame."""
|
62 |
-
data_path = f"datasets/{domain}.csv"
|
63 |
-
if os.path.exists(data_path):
|
64 |
-
df = pd.read_csv(data_path)
|
65 |
-
if not isinstance(df, pd.DataFrame) or df.empty:
|
66 |
-
raise ValueError("β Loaded data is invalid!")
|
67 |
-
return df
|
68 |
-
else:
|
69 |
-
raise FileNotFoundError(f"β Dataset for {domain} not found.")
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from ctgan import CTGAN
|
3 |
+
from sklearn.preprocessing import LabelEncoder
|
4 |
+
import os
|
5 |
+
import json
|
6 |
+
import requests
|
7 |
+
|
8 |
+
def train_and_generate_synthetic(real_data, schema, output_path):
|
9 |
+
"""Trains a CTGAN model and generates synthetic data."""
|
10 |
+
categorical_cols = [col for col, dtype in zip(schema['columns'], schema['types']) if dtype == 'string']
|
11 |
+
|
12 |
+
# Store label encoders
|
13 |
+
label_encoders = {}
|
14 |
+
for col in categorical_cols:
|
15 |
+
le = LabelEncoder()
|
16 |
+
real_data[col] = le.fit_transform(real_data[col])
|
17 |
+
label_encoders[col] = le
|
18 |
+
|
19 |
+
# Train CTGAN
|
20 |
+
gan = CTGAN(epochs=300)
|
21 |
+
gan.fit(real_data, categorical_cols)
|
22 |
+
|
23 |
+
# Generate synthetic data
|
24 |
+
synthetic_data = gan.sample(schema['size'])
|
25 |
+
|
26 |
+
# Decode categorical columns
|
27 |
+
for col in categorical_cols:
|
28 |
+
synthetic_data[col] = label_encoders[col].inverse_transform(synthetic_data[col])
|
29 |
+
|
30 |
+
# Save to CSV
|
31 |
+
os.makedirs('outputs', exist_ok=True)
|
32 |
+
synthetic_data.to_csv(output_path, index=False)
|
33 |
+
print(f"β
Synthetic data saved to {output_path}")
|
34 |
+
|
35 |
+
def generate_schema(prompt):
|
36 |
+
"""Fetches schema from an external API and validates JSON."""
|
37 |
+
API_URL = "https://infinitymatter-synthetic-data-generator-srijan.hf.space/run/predict"
|
38 |
+
headers = {"Authorization": f"Bearer hf_token"} # Add if needed
|
39 |
+
|
40 |
+
try:
|
41 |
+
response = requests.post(API_URL, json={"prompt": prompt}, headers=headers)
|
42 |
+
print("π Raw API Response:", response.text) # Debugging line
|
43 |
+
|
44 |
+
schema = response.json()
|
45 |
+
|
46 |
+
# Validate required keys
|
47 |
+
if 'columns' not in schema or 'types' not in schema or 'size' not in schema:
|
48 |
+
raise ValueError("β Invalid schema format! Expected keys: 'columns', 'types', 'size'")
|
49 |
+
|
50 |
+
print("β
Valid Schema Received:", schema) # Debugging line
|
51 |
+
return schema
|
52 |
+
|
53 |
+
except json.JSONDecodeError:
|
54 |
+
print("β Failed to parse JSON response. API might be down or returning non-JSON data.")
|
55 |
+
return None
|
56 |
+
except requests.exceptions.RequestException as e:
|
57 |
+
print(f"β API request failed: {e}")
|
58 |
+
return None
|
59 |
+
|
60 |
+
def fetch_data(domain):
|
61 |
+
"""Fetches real data for the given domain and ensures it's a valid DataFrame."""
|
62 |
+
data_path = f"datasets/{domain}.csv"
|
63 |
+
if os.path.exists(data_path):
|
64 |
+
df = pd.read_csv(data_path)
|
65 |
+
if not isinstance(df, pd.DataFrame) or df.empty:
|
66 |
+
raise ValueError("β Loaded data is invalid!")
|
67 |
+
return df
|
68 |
+
else:
|
69 |
+
raise FileNotFoundError(f"β Dataset for {domain} not found.")
|