Spaces:
Running
Running
File size: 4,335 Bytes
6a40ae3 64bfc65 6a40ae3 3070f01 6a40ae3 64bfc65 6a40ae3 64bfc65 6a40ae3 64bfc65 6a40ae3 64bfc65 6a40ae3 64bfc65 6a40ae3 64bfc65 cdd8617 6a40ae3 64bfc65 bd89ad5 6a40ae3 64bfc65 6a40ae3 64bfc65 6a40ae3 64bfc65 6a40ae3 692e84c 64bfc65 6a40ae3 64bfc65 6a40ae3 692e84c 6a40ae3 692e84c 7ce9f0f d33c3e8 692e84c d33c3e8 6a40ae3 64bfc65 bd89ad5 6a40ae3 7ce9f0f 6a40ae3 692e84c 21aa39f 4a44340 2028153 4a44340 b9c157e 6a40ae3 00f7c3d 4a44340 6a40ae3 692e84c 6a40ae3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
import gradio as gr
import json
import os
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from io import BytesIO
from PIL import Image
# -------------------------------
# 1. Load Results from Local File
# -------------------------------
def load_results():
# Get the directory of the current file
current_dir = os.path.dirname(os.path.abspath(__file__))
results_file = os.path.join(current_dir, "files", "aragen_v1_results.json")
with open(results_file, "r") as f:
data = json.load(f)
# Filter out any non-model entries (e.g., timestamp entries)
model_data = [entry for entry in data if "Meta" in entry]
return model_data
# Load the JSON data once when the app starts
DATA = load_results()
# Extract model names for the dropdown from the JSON "Meta" field
def get_model_names(data):
model_names = [entry["Meta"]["Model Name"] for entry in data]
return model_names
MODEL_NAMES = get_model_names(DATA)
# -------------------------------
# 2. Define Metrics and Heatmap Generation Functions
# -------------------------------
# Define the six metrics in the desired order.
METRICS = ["Correctness", "Completeness", "Conciseness", "Helpfulness", "Honesty", "Harmlessness"]
def generate_heatmap_image(model_entry):
"""
For a given model entry, extract the six metrics and compute a 6x6 similarity matrix
using the definition: similarity = 1 - |v_i - v_j|, then return the heatmap as a PIL image.
"""
scores = model_entry["claude-3.5-sonnet Scores"]["3C3H Scores"]
# Create a vector with the metrics in the defined order.
v = np.array([scores[m] for m in METRICS])
# Compute the 6x6 similarity matrix.
matrix = 1 - np.abs(np.subtract.outer(v, v))
# Create a mask for the upper triangle (keeping the diagonal visible).
mask = np.triu(np.ones_like(matrix, dtype=bool), k=1)
# Set a consistent figure size that will work well in the gallery
plt.figure(figsize=(6, 5), dpi=100)
sns.heatmap(matrix,
mask=mask,
annot=True,
fmt=".2f",
cmap="viridis",
xticklabels=METRICS,
yticklabels=METRICS,
cbar_kws={"label": "Similarity"})
plt.title(f"Confusion Matrix for Model: {model_entry['Meta']['Model Name']}")
plt.xlabel("Metrics")
plt.ylabel("Metrics")
plt.tight_layout()
# Save the plot to a bytes buffer.
buf = BytesIO()
plt.savefig(buf, format="png", bbox_inches="tight")
plt.close()
buf.seek(0)
# Convert the buffer into a PIL Image.
image = Image.open(buf).convert("RGB")
# Resize the image to a reasonable fixed size for the gallery
max_size = (800, 600)
image.thumbnail(max_size, Image.Resampling.LANCZOS)
return image
def generate_heatmaps(selected_model_names):
"""
Filter the global DATA for entries matching the selected model names,
generate a heatmap for each, and return a list of PIL images.
"""
filtered_entries = [entry for entry in DATA if entry["Meta"]["Model Name"] in selected_model_names]
images = []
for entry in filtered_entries:
img = generate_heatmap_image(entry)
images.append(img)
return images
# -------------------------------
# 3. Build the Gradio Interface
# -------------------------------
with gr.Blocks(css="""
.gallery-item img {
max-width: 100% !important;
max-height: 100% !important;
object-fit: contain !important;
}
""") as demo:
gr.HTML("""
<center>
<br></br>
<h1>3C3H Heatmap Generator</h1>
<h3>Select the models you want to compare and generate their heatmaps below.</h3>
<br></br>
</center>
""")
with gr.Row():
default_models = ["silma-ai/SILMA-9B-Instruct-v1.0", "google/gemma-2-9b-it"]
model_dropdown = gr.Dropdown(choices=MODEL_NAMES, label="Select Model(s)", multiselect=True, value=default_models)
generate_btn = gr.Button("Generate Heatmaps")
# Set height and columns for better display
gallery = gr.Gallery(
label="Heatmaps",
columns=2,
height="auto",
object_fit="contain"
)
generate_btn.click(fn=generate_heatmaps, inputs=model_dropdown, outputs=gallery)
demo.launch()
|