Pulmonary-BERT / app.py
implax's picture
Final
ba12ca2
#
import torch
import gradio as gr
import pandas as pd
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from scipy.special import softmax
# Load model and tokenizer
model_path = "trained_clinicalbert"
model = AutoModelForSequenceClassification.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
model.eval()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# Define class labels manually (ensure it matches the trained model)
classes = ["Asthma", "COPD", "Lung Cancer", "Other Pulmonary", "Pleural Effusion", "Pneumonia", "Tuberculosis"]
# Prediction function
def predict_clinical_note(note):
inputs = tokenizer(note, return_tensors="pt", truncation=True, padding="max_length", max_length=512)
inputs = {key: val.to(device) for key, val in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
probs = softmax(outputs.logits.cpu().numpy(), axis=1)
pred_idx = probs.argmax(axis=1)[0]
pred_class = classes[pred_idx]
confidence = float(probs[0][pred_idx])
return f"{pred_class} (Confidence: {confidence:.2f})"
# Gradio interface
iface = gr.Interface(
fn=predict_clinical_note,
inputs=gr.Textbox(lines=6, placeholder="Paste clinical note here..."),
outputs="text",
title="Pulmonary Disease Classifier",
description="Enter a clinical note to predict pulmonary condition (e.g., COPD, Pneumonia, Tuberculosis...)"
)
if __name__ == "__main__":
iface.launch()