ikraamkb commited on
Commit
790835b
Β·
verified Β·
1 Parent(s): 9e440ae

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -14
app.py CHANGED
@@ -7,7 +7,7 @@ import torch
7
  from torchvision import transforms
8
  from torchvision.models.detection import fasterrcnn_resnet50_fpn
9
  from PIL import Image
10
- from transformers import pipeline
11
  import gradio as gr
12
  from fastapi.responses import RedirectResponse
13
  import numpy as np
@@ -16,25 +16,19 @@ import easyocr
16
  # Initialize FastAPI
17
  app = FastAPI()
18
 
19
- # Load AI Model for Question Answering (DeepSeek-V2-Chat)
20
- from transformers import AutoModelForCausalLM, AutoTokenizer
21
-
22
- # Preload Hugging Face model
23
- model_name = "microsoft/phi-2"
24
  print(f"πŸ”„ Loading model: {model_name}...")
25
  tokenizer = AutoTokenizer.from_pretrained(model_name)
26
- model = AutoModelForCausalLM.from_pretrained(model_name)
27
 
28
- qa_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer, device=-1)
29
 
30
  # Load Pretrained Object Detection Model (Torchvision)
31
  from torchvision.models.detection import FasterRCNN_ResNet50_FPN_Weights
32
  weights = FasterRCNN_ResNet50_FPN_Weights.DEFAULT
33
- model = fasterrcnn_resnet50_fpn(weights=weights)
34
- model.eval()
35
- # Load Pretrained Object Detection Model (if needed)
36
- model = fasterrcnn_resnet50_fpn(pretrained=True)
37
- model.eval()
38
 
39
  # Initialize OCR Model (Lazy Load)
40
  reader = easyocr.Reader(["en"], gpu=True)
@@ -172,4 +166,4 @@ app = gr.mount_gradio_app(app, demo, path="/")
172
 
173
  @app.get("/")
174
  def home():
175
- return RedirectResponse(url="/")
 
7
  from torchvision import transforms
8
  from torchvision.models.detection import fasterrcnn_resnet50_fpn
9
  from PIL import Image
10
+ from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
11
  import gradio as gr
12
  from fastapi.responses import RedirectResponse
13
  import numpy as np
 
16
  # Initialize FastAPI
17
  app = FastAPI()
18
 
19
+ # Load AI Model for Question Answering (Mistral-7B)
20
+ model_name = "mistralai/Mistral-7B"
 
 
 
21
  print(f"πŸ”„ Loading model: {model_name}...")
22
  tokenizer = AutoTokenizer.from_pretrained(model_name)
23
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
24
 
25
+ qa_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0)
26
 
27
  # Load Pretrained Object Detection Model (Torchvision)
28
  from torchvision.models.detection import FasterRCNN_ResNet50_FPN_Weights
29
  weights = FasterRCNN_ResNet50_FPN_Weights.DEFAULT
30
+ object_detection_model = fasterrcnn_resnet50_fpn(weights=weights)
31
+ object_detection_model.eval()
 
 
 
32
 
33
  # Initialize OCR Model (Lazy Load)
34
  reader = easyocr.Reader(["en"], gpu=True)
 
166
 
167
  @app.get("/")
168
  def home():
169
+ return RedirectResponse(url="/")