ikraamkb commited on
Commit
6e8ae10
Β·
verified Β·
1 Parent(s): e49fcbd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -17
app.py CHANGED
@@ -1,22 +1,22 @@
1
  from fastapi import FastAPI, File, UploadFile
 
2
  import fitz # PyMuPDF for PDF parsing
3
  from tika import parser # Apache Tika for document parsing
4
  import openpyxl
5
  from pptx import Presentation
6
- import torch
7
  from transformers import pipeline
8
  import gradio as gr
9
- from PIL import Image
10
  import numpy as np
11
 
12
- # Initialize FastAPI (not needed for HF Spaces but kept for flexibility)
13
  app = FastAPI()
14
 
15
  print(f"πŸ”„ Loading models")
16
 
17
  # Load Hugging Face Models
18
  doc_qa_pipeline = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", device=-1)
19
- vqa_pipeline = pipeline("vqa", model="Salesforce/blip-vqa-base") # VQA model for images
20
 
21
  print("βœ… Models loaded")
22
 
@@ -67,7 +67,6 @@ def extract_text_from_excel(excel_bytes):
67
  except Exception as e:
68
  return f"❌ Error reading Excel: {str(e)}"
69
 
70
- # Function to process documents and answer questions
71
  def answer_question_from_document(file: UploadFile, question: str):
72
  print("πŸ“‚ Processing document for QA...")
73
  validation_error = validate_file_type(file)
@@ -95,17 +94,19 @@ def answer_question_from_document(file: UploadFile, question: str):
95
 
96
  return response[0]["generated_text"]
97
 
98
- # Function to process images and answer questions (NO OCR)
99
  def answer_question_from_image(image, question):
100
  try:
101
  print("πŸ–ΌοΈ Processing image for QA...")
102
  if isinstance(image, np.ndarray): # If it's a NumPy array from Gradio
103
  image = Image.fromarray(image) # Convert to PIL Image
104
 
105
- print("πŸ€– Answering question based on image content...")
106
- response = vqa_pipeline(image=image, question=question)
 
 
 
107
 
108
- return response[0]["answer"]
109
  except Exception as e:
110
  return f"❌ Error processing image: {str(e)}"
111
 
@@ -121,15 +122,18 @@ img_interface = gr.Interface(
121
  fn=answer_question_from_image,
122
  inputs=[gr.Image(label="πŸ–ΌοΈ Upload Image"), gr.Textbox(label="πŸ’¬ Ask a Question")],
123
  outputs="text",
124
- title="πŸ–ΌοΈ AI Image Question Answering (NO OCR)"
125
  )
126
 
127
- # Define Gradio App
128
- app_ui = gr.TabbedInterface(
129
- [doc_interface, img_interface],
130
- ["πŸ“„ Document QA", "πŸ–ΌοΈ Image QA"]
131
- )
 
 
132
 
133
- # Run Gradio UI separately
134
  if __name__ == "__main__":
135
- app_ui.launch(share=True)
 
 
1
  from fastapi import FastAPI, File, UploadFile
2
+ from fastapi.responses import RedirectResponse
3
  import fitz # PyMuPDF for PDF parsing
4
  from tika import parser # Apache Tika for document parsing
5
  import openpyxl
6
  from pptx import Presentation
7
+ from PIL import Image
8
  from transformers import pipeline
9
  import gradio as gr
 
10
  import numpy as np
11
 
12
+ # Initialize FastAPI
13
  app = FastAPI()
14
 
15
  print(f"πŸ”„ Loading models")
16
 
17
  # Load Hugging Face Models
18
  doc_qa_pipeline = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", device=-1)
19
+ image_captioning_pipeline = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
20
 
21
  print("βœ… Models loaded")
22
 
 
67
  except Exception as e:
68
  return f"❌ Error reading Excel: {str(e)}"
69
 
 
70
  def answer_question_from_document(file: UploadFile, question: str):
71
  print("πŸ“‚ Processing document for QA...")
72
  validation_error = validate_file_type(file)
 
94
 
95
  return response[0]["generated_text"]
96
 
 
97
  def answer_question_from_image(image, question):
98
  try:
99
  print("πŸ–ΌοΈ Processing image for QA...")
100
  if isinstance(image, np.ndarray): # If it's a NumPy array from Gradio
101
  image = Image.fromarray(image) # Convert to PIL Image
102
 
103
+ print("πŸ–ΌοΈ Generating caption for image...")
104
+ caption = image_captioning_pipeline(image)[0]['generated_text']
105
+
106
+ print("πŸ€– Answering question based on caption...")
107
+ response = doc_qa_pipeline(f"Question: {question}\nContext: {caption}")
108
 
109
+ return response[0]["generated_text"]
110
  except Exception as e:
111
  return f"❌ Error processing image: {str(e)}"
112
 
 
122
  fn=answer_question_from_image,
123
  inputs=[gr.Image(label="πŸ–ΌοΈ Upload Image"), gr.Textbox(label="πŸ’¬ Ask a Question")],
124
  outputs="text",
125
+ title="πŸ–ΌοΈ AI Image Question Answering"
126
  )
127
 
128
+ # Mount Gradio Interfaces
129
+ demo = gr.TabbedInterface([doc_interface, img_interface], ["πŸ“„ Document QA", "πŸ–ΌοΈ Image QA"])
130
+ app = gr.mount_gradio_app(app, demo, path="/")
131
+
132
+ @app.get("/")
133
+ def home():
134
+ return RedirectResponse(url="/")
135
 
136
+ # Run FastAPI + Gradio together
137
  if __name__ == "__main__":
138
+ import uvicorn
139
+ uvicorn.run(app, host="0.0.0.0", port=7860)