Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,78 +1,4 @@
|
|
1 |
|
2 |
-
"""
|
3 |
-
from fastapi import FastAPI
|
4 |
-
from fastapi.responses import RedirectResponse
|
5 |
-
import gradio as gr
|
6 |
-
|
7 |
-
from transformers import pipeline, ViltProcessor, ViltForQuestionAnswering, AutoTokenizer, AutoModelForCausalLM
|
8 |
-
from PIL import Image
|
9 |
-
import torch
|
10 |
-
import fitz # PyMuPDF for PDF
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
app = FastAPI()
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
# ========== Document QA Setup ==========
|
19 |
-
doc_tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
|
20 |
-
doc_model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
|
21 |
-
|
22 |
-
def read_pdf(file):
|
23 |
-
doc = fitz.open(stream=file.read(), filetype="pdf")
|
24 |
-
text = ""
|
25 |
-
for page in doc:
|
26 |
-
text += page.get_text()
|
27 |
-
return text
|
28 |
-
|
29 |
-
def answer_question_from_doc(file, question):
|
30 |
-
if file is None or not question.strip():
|
31 |
-
return "Please upload a document and ask a question."
|
32 |
-
text = read_pdf(file)
|
33 |
-
prompt = f"Context: {text}\nQuestion: {question}\nAnswer:"
|
34 |
-
inputs = doc_tokenizer(prompt, return_tensors="pt", truncation=True, max_length=2048)
|
35 |
-
with torch.no_grad():
|
36 |
-
outputs = doc_model.generate(**inputs, max_new_tokens=100)
|
37 |
-
answer = doc_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
38 |
-
return answer.split("Answer:")[-1].strip()
|
39 |
-
|
40 |
-
# ========== Image QA Setup ==========
|
41 |
-
vqa_processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
42 |
-
vqa_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
43 |
-
|
44 |
-
def answer_question_from_image(image, question):
|
45 |
-
if image is None or not question.strip():
|
46 |
-
return "Please upload an image and ask a question."
|
47 |
-
inputs = vqa_processor(image, question, return_tensors="pt")
|
48 |
-
with torch.no_grad():
|
49 |
-
outputs = vqa_model(**inputs)
|
50 |
-
predicted_id = outputs.logits.argmax(-1).item()
|
51 |
-
return vqa_model.config.id2label[predicted_id]
|
52 |
-
|
53 |
-
# ========== Gradio Interfaces ==========
|
54 |
-
doc_interface = gr.Interface(
|
55 |
-
fn=answer_question_from_doc,
|
56 |
-
inputs=[gr.File(label="Upload Document (PDF)"), gr.Textbox(label="Ask a Question")],
|
57 |
-
outputs="text",
|
58 |
-
title="Document Question Answering"
|
59 |
-
)
|
60 |
-
|
61 |
-
img_interface = gr.Interface(
|
62 |
-
fn=answer_question_from_image,
|
63 |
-
inputs=[gr.Image(label="Upload Image"), gr.Textbox(label="Ask a Question")],
|
64 |
-
outputs="text",
|
65 |
-
title="Image Question Answering"
|
66 |
-
)
|
67 |
-
|
68 |
-
# ========== Combine and Mount ==========
|
69 |
-
demo = gr.TabbedInterface([doc_interface, img_interface], ["Document QA", "Image QA"])
|
70 |
-
app = gr.mount_gradio_app(app, demo, path="/")
|
71 |
-
|
72 |
-
@app.get("/")
|
73 |
-
def root():
|
74 |
-
return RedirectResponse(url="/")
|
75 |
-
"""
|
76 |
import gradio as gr
|
77 |
import fitz # PyMuPDF for PDFs
|
78 |
import easyocr # OCR for images
|
@@ -136,10 +62,6 @@ def extract_text_from_xlsx(xlsx_file):
|
|
136 |
return f"Error reading XLSX: {e}"
|
137 |
return "\n".join(text)
|
138 |
|
139 |
-
def extract_text_from_image(image_path):
|
140 |
-
"""Extract text from an image using EasyOCR."""
|
141 |
-
result = reader.readtext(image_path, detail=0)
|
142 |
-
return " ".join(result) # Return text as a single string
|
143 |
|
144 |
# ---- MAIN PROCESSING FUNCTIONS ----
|
145 |
def answer_question_from_doc(file, question):
|
@@ -167,26 +89,12 @@ def answer_question_from_doc(file, question):
|
|
167 |
except Exception as e:
|
168 |
return f"Error generating answer: {e}"
|
169 |
|
170 |
-
def answer_question_from_image(image, question):
|
171 |
-
"""Process an image, extract text, and answer a question."""
|
172 |
-
img_text = extract_text_from_image(image)
|
173 |
-
if not img_text.strip():
|
174 |
-
return """No readable text found in the image."""
|
175 |
-
|
176 |
try:
|
177 |
result = qa_model({"question": question, "context": img_text})
|
178 |
return result["answer"]
|
179 |
except Exception as e:
|
180 |
return f"Error generating answer: {e}"
|
181 |
|
182 |
-
# ---- GRADIO INTERFACES ----
|
183 |
-
with gr.Blocks() as doc_interface:
|
184 |
-
gr.Markdown("## 📄 Document Question Answering")
|
185 |
-
file_input = gr.File(label="Upload DOCX, PPTX, XLSX, or PDF")
|
186 |
-
question_input = gr.Textbox(label="Ask a question")
|
187 |
-
answer_output = gr.Textbox(label="Answer")
|
188 |
-
file_submit = gr.Button("Get Answer")
|
189 |
-
file_submit.click(answer_question_from_doc, inputs=[file_input, question_input], outputs=answer_output)
|
190 |
|
191 |
with gr.Blocks() as img_interface:
|
192 |
gr.Markdown("## 🖼️ Image Question Answering")
|
@@ -197,7 +105,7 @@ with gr.Blocks() as img_interface:
|
|
197 |
image_submit.click(answer_question_from_image, inputs=[image_input, img_question_input], outputs=img_answer_output)
|
198 |
|
199 |
# ---- MOUNT GRADIO APP ----
|
200 |
-
demo = gr.TabbedInterface(
|
201 |
app = gr.mount_gradio_app(app, demo, path="/")
|
202 |
|
203 |
@app.get("/")
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
import fitz # PyMuPDF for PDFs
|
4 |
import easyocr # OCR for images
|
|
|
62 |
return f"Error reading XLSX: {e}"
|
63 |
return "\n".join(text)
|
64 |
|
|
|
|
|
|
|
|
|
65 |
|
66 |
# ---- MAIN PROCESSING FUNCTIONS ----
|
67 |
def answer_question_from_doc(file, question):
|
|
|
89 |
except Exception as e:
|
90 |
return f"Error generating answer: {e}"
|
91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
try:
|
93 |
result = qa_model({"question": question, "context": img_text})
|
94 |
return result["answer"]
|
95 |
except Exception as e:
|
96 |
return f"Error generating answer: {e}"
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
with gr.Blocks() as img_interface:
|
100 |
gr.Markdown("## 🖼️ Image Question Answering")
|
|
|
105 |
image_submit.click(answer_question_from_image, inputs=[image_input, img_question_input], outputs=img_answer_output)
|
106 |
|
107 |
# ---- MOUNT GRADIO APP ----
|
108 |
+
demo = gr.TabbedInterface(img_interface, "Image QA")
|
109 |
app = gr.mount_gradio_app(app, demo, path="/")
|
110 |
|
111 |
@app.get("/")
|