Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,37 +1,25 @@
|
|
1 |
-
|
|
|
2 |
import pdfplumber
|
3 |
-
import pytesseract
|
4 |
-
from PIL import Image
|
5 |
-
import easyocr
|
6 |
import docx
|
7 |
import openpyxl
|
8 |
from pptx import Presentation
|
9 |
from transformers import pipeline
|
10 |
import gradio as gr
|
11 |
-
import pandas as pd
|
12 |
-
import matplotlib.pyplot as plt
|
13 |
-
import seaborn as sns
|
14 |
from fastapi.responses import RedirectResponse
|
15 |
-
import io
|
16 |
|
17 |
# β
Initialize FastAPI
|
18 |
app = FastAPI()
|
19 |
|
20 |
-
# β
Load AI
|
21 |
-
|
22 |
-
|
23 |
-
qa_pipeline = pipeline("text2text-generation",model="google/flan-t5-large",tokenizer="google/flan-t5-large",use_fast=True,device=0)
|
24 |
-
table_analyzer = pipeline("table-question-answering",model="google/tapas-large-finetuned-wtq",tokenizer="google/tapas-large-finetuned-wtq",use_fast=True,device=0)
|
25 |
-
code_generator = pipeline("text-generation",model="openai-community/gpt2-medium",tokenizer="openai-community/gpt2-medium",use_fast=True,device=0)
|
26 |
-
vqa_pipeline = pipeline("image-to-text",model="Salesforce/blip-vqa-base",device=0 )
|
27 |
|
28 |
-
|
29 |
-
# β
Function to truncate text to 450 tokens
|
30 |
def truncate_text(text, max_tokens=450):
|
31 |
words = text.split()
|
32 |
-
return " ".join(words[:max_tokens])
|
33 |
|
34 |
-
# β
Functions
|
35 |
def extract_text_from_pdf(pdf_file):
|
36 |
text = ""
|
37 |
with pdfplumber.open(pdf_file) as pdf:
|
@@ -60,11 +48,7 @@ def extract_text_from_excel(excel_file):
|
|
60 |
text.append(" ".join(map(str, row)))
|
61 |
return "\n".join(text)
|
62 |
|
63 |
-
|
64 |
-
reader = easyocr.Reader(["en"])
|
65 |
-
result = reader.readtext(image_file)
|
66 |
-
return " ".join([res[1] for res in result])
|
67 |
-
|
68 |
def answer_question_from_document(file, question):
|
69 |
file_ext = file.name.split(".")[-1].lower()
|
70 |
|
@@ -83,25 +67,11 @@ def answer_question_from_document(file, question):
|
|
83 |
return "No text extracted from the document."
|
84 |
|
85 |
truncated_text = truncate_text(text) # β
Prevents token limit error
|
86 |
-
|
87 |
-
input_text = f"Question: {question} Context: {truncated_text}" # β
Proper FLAN-T5 format
|
88 |
-
response = qa_pipeline(input_text)
|
89 |
-
|
90 |
-
return response[0]["generated_text"] # β
Returns the correct output
|
91 |
-
|
92 |
-
def answer_question_from_image(image, question):
|
93 |
-
image_text = extract_text_from_image(image)
|
94 |
-
if not image_text:
|
95 |
-
return "No text detected in the image."
|
96 |
-
|
97 |
-
truncated_text = truncate_text(image_text) # β
Prevents token limit error
|
98 |
-
|
99 |
input_text = f"Question: {question} Context: {truncated_text}"
|
100 |
response = qa_pipeline(input_text)
|
101 |
-
|
102 |
return response[0]["generated_text"]
|
103 |
|
104 |
-
# β
Gradio UI for Document
|
105 |
doc_interface = gr.Interface(
|
106 |
fn=answer_question_from_document,
|
107 |
inputs=[gr.File(label="Upload Document"), gr.Textbox(label="Ask a Question")],
|
@@ -109,28 +79,8 @@ doc_interface = gr.Interface(
|
|
109 |
title="AI Document Question Answering"
|
110 |
)
|
111 |
|
112 |
-
img_interface = gr.Interface(
|
113 |
-
fn=answer_question_from_image,
|
114 |
-
inputs=[gr.Image(label="Upload Image"), gr.Textbox(label="Ask a Question")],
|
115 |
-
outputs="text",
|
116 |
-
title="AI Image Question Answering"
|
117 |
-
)
|
118 |
-
|
119 |
-
|
120 |
-
# β
Gradio UI for Data Visualization
|
121 |
-
viz_interface = gr.Interface(
|
122 |
-
fn=generate_visualization,
|
123 |
-
inputs=[
|
124 |
-
gr.File(label="Upload Excel File"),
|
125 |
-
gr.Radio(["Bar Chart", "Line Chart", "Scatter Plot", "Histogram"], label="Choose Visualization Type"),
|
126 |
-
gr.Textbox(label="Enter Visualization Request")
|
127 |
-
],
|
128 |
-
outputs=[gr.Code(label="Generated Python Code"), gr.Image(label="Visualization Output")],
|
129 |
-
title="AI-Powered Data Visualization"
|
130 |
-
)
|
131 |
-
|
132 |
# β
Mount Gradio Interfaces
|
133 |
-
demo = gr.TabbedInterface([doc_interface
|
134 |
app = gr.mount_gradio_app(app, demo, path="/")
|
135 |
|
136 |
@app.get("/")
|
|
|
1 |
+
|
2 |
+
from fastapi import FastAPI, UploadFile
|
3 |
import pdfplumber
|
|
|
|
|
|
|
4 |
import docx
|
5 |
import openpyxl
|
6 |
from pptx import Presentation
|
7 |
from transformers import pipeline
|
8 |
import gradio as gr
|
|
|
|
|
|
|
9 |
from fastapi.responses import RedirectResponse
|
|
|
10 |
|
11 |
# β
Initialize FastAPI
|
12 |
app = FastAPI()
|
13 |
|
14 |
+
# β
Load AI Model
|
15 |
+
qa_pipeline = pipeline("text2text-generation", model="google/flan-t5-large", tokenizer="google/flan-t5-large", use_fast=True, device=0)
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
# β
Function to truncate text to avoid token limit errors
|
|
|
18 |
def truncate_text(text, max_tokens=450):
|
19 |
words = text.split()
|
20 |
+
return " ".join(words[:max_tokens])
|
21 |
|
22 |
+
# β
Functions to extract text from different file formats
|
23 |
def extract_text_from_pdf(pdf_file):
|
24 |
text = ""
|
25 |
with pdfplumber.open(pdf_file) as pdf:
|
|
|
48 |
text.append(" ".join(map(str, row)))
|
49 |
return "\n".join(text)
|
50 |
|
51 |
+
# β
Function to answer questions based on document content
|
|
|
|
|
|
|
|
|
52 |
def answer_question_from_document(file, question):
|
53 |
file_ext = file.name.split(".")[-1].lower()
|
54 |
|
|
|
67 |
return "No text extracted from the document."
|
68 |
|
69 |
truncated_text = truncate_text(text) # β
Prevents token limit error
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
input_text = f"Question: {question} Context: {truncated_text}"
|
71 |
response = qa_pipeline(input_text)
|
|
|
72 |
return response[0]["generated_text"]
|
73 |
|
74 |
+
# β
Gradio UI for Document QA
|
75 |
doc_interface = gr.Interface(
|
76 |
fn=answer_question_from_document,
|
77 |
inputs=[gr.File(label="Upload Document"), gr.Textbox(label="Ask a Question")],
|
|
|
79 |
title="AI Document Question Answering"
|
80 |
)
|
81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
# β
Mount Gradio Interfaces
|
83 |
+
demo = gr.TabbedInterface([doc_interface], ["Document QA"])
|
84 |
app = gr.mount_gradio_app(app, demo, path="/")
|
85 |
|
86 |
@app.get("/")
|