qtAnswering / appImage.py
ikraamkb's picture
Update appImage.py
ba47cad verified
raw
history blame
5.83 kB
"""from fastapi import FastAPI
from fastapi.responses import RedirectResponse
import gradio as gr
from transformers import pipeline, ViltProcessor, ViltForQuestionAnswering, AutoTokenizer, AutoModelForCausalLM
from PIL import Image
import torch
import fitz # PyMuPDF for PDF
app = FastAPI()
# ========== Image QA Setup ==========
vqa_processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
vqa_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
def answer_question_from_image(image, question):
if image is None or not question.strip():
return "Please upload an image and ask a question."
inputs = vqa_processor(image, question, return_tensors="pt")
with torch.no_grad():
outputs = vqa_model(**inputs)
predicted_id = outputs.logits.argmax(-1).item()
return vqa_model.config.id2label[predicted_id]
# ========== Gradio Interfaces ==========
img_interface = gr.Interface(
fn=answer_question_from_image,
inputs=[gr.Image(label="Upload Image"), gr.Textbox(label="Ask a Question")],
outputs="text",
title="Image Question Answering"
)
# ========== Combine and Mount ==========
demo = gr.TabbedInterface( img_interface , "Image QA")
app = gr.mount_gradio_app(app, demo, path="/")
@app.get("/")
def root():
return RedirectResponse(url="/") """
"""from transformers import ViltProcessor, ViltForQuestionAnswering
import torch
# Load image QA model once
vqa_processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
vqa_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
def answer_question_from_image(image, question):
if image is None or not question.strip():
return "Please upload an image and ask a question."
inputs = vqa_processor(image, question, return_tensors="pt")
with torch.no_grad():
outputs = vqa_model(**inputs)
predicted_id = outputs.logits.argmax(-1).item()
return vqa_model.config.id2label[predicted_id]"""
from fastapi import FastAPI, Request, UploadFile, Form
from fastapi.responses import RedirectResponse, FileResponse, HTMLResponse, JSONResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
import os
import shutil
from PIL import Image
from transformers import ViltProcessor, ViltForQuestionAnswering, pipeline
from gtts import gTTS
import easyocr
import torch
import tempfile
import gradio as gr
import numpy as np
app = FastAPI()
# Setup templates and static
app.mount("/static", StaticFiles(directory="static"), name="static")
app.mount("/resources", StaticFiles(directory="resources"), name="resources")
templates = Jinja2Templates(directory="templates")
# Serve custom HTML at /
@app.get("/", response_class=HTMLResponse)
def serve_home(request: Request):
return templates.TemplateResponse("home.html", {"request": request})
# Load Models
vqa_processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
vqa_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
captioner = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
reader = easyocr.Reader(['en', 'fr'])
# Determine which feature to use
def classify_question(question: str):
question_lower = question.lower()
if any(word in question_lower for word in ["text", "say", "written", "read"]):
return "ocr"
elif any(word in question_lower for word in ["caption", "describe", "what is in the image"]):
return "caption"
else:
return "vqa"
# Answer logic
def answer_question_from_image(image, question):
if image is None or not question.strip():
return "Please upload an image and ask a question.", None
mode = classify_question(question)
if mode == "ocr":
try:
result = reader.readtext(np.array(image))
text = " ".join([entry[1] for entry in result])
answer = text.strip() or "No readable text found."
except Exception as e:
answer = f"OCR Error: {e}"
elif mode == "caption":
try:
answer = captioner(image)[0]['generated_text']
except Exception as e:
answer = f"Captioning error: {e}"
else:
try:
inputs = vqa_processor(image, question, return_tensors="pt")
with torch.no_grad():
outputs = vqa_model(**inputs)
predicted_id = outputs.logits.argmax(-1).item()
answer = vqa_model.config.id2label[predicted_id]
except Exception as e:
answer = f"VQA error: {e}"
try:
tts = gTTS(text=answer)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp:
tts.save(tmp.name)
audio_path = tmp.name
except Exception as e:
return f"Answer: {answer}\n\n⚠️ Audio generation error: {e}", None
return answer, audio_path
# API Endpoint for frontend
@app.post("/predict")
async def predict(file: UploadFile = Form(...), question: str = Form(...)):
try:
file_ext = file.filename.split(".")[-1].lower()
image = Image.open(file.file)
answer, audio_path = answer_question_from_image(image, question)
return JSONResponse({
"answer": answer,
"audio": f"/audio/{os.path.basename(audio_path)}" if audio_path else None
})
except Exception as e:
return JSONResponse({"error": f"Server error: {e}"}, status_code=500)
# Serve audio responses
@app.get("/audio/{filename}")
def serve_audio(filename: str):
audio_path = os.path.join(tempfile.gettempdir(), filename)
if os.path.exists(audio_path):
return FileResponse(audio_path, media_type="audio/mpeg")
return JSONResponse({"error": "File not found"}, status_code=404)