qtAnswering / app.py
ikraamkb's picture
Update app.py
6daac1d verified
raw
history blame
9.42 kB
from fastapi import FastAPI, File, UploadFile
import fitz # PyMuPDF for PDF parsing
from tika import parser # Apache Tika for document parsing
import openpyxl
from pptx import Presentation
import torch
from torchvision import transforms
from torchvision.models.detection import fasterrcnn_resnet50_fpn
from PIL import Image
from transformers import pipeline
import gradio as gr
from fastapi.responses import RedirectResponse
import numpy as np
# Initialize FastAPI
print("πŸš€ FastAPI server is starting...")
app = FastAPI()
# Load AI Model for Question Answering (DeepSeek-V2-Chat)
from transformers import AutoModelForCausalLM, AutoTokenizer
# Preload Hugging Face model
print(f"πŸ”„ Loading models")
qa_pipeline = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", device=-1)
# Load Pretrained Object Detection Model (Torchvision)
from torchvision.models.detection import FasterRCNN_ResNet50_FPN_Weights
weights = FasterRCNN_ResNet50_FPN_Weights.DEFAULT
model = fasterrcnn_resnet50_fpn(weights=weights)
model.eval()
# Image Transformations
transform = transforms.Compose([
transforms.ToTensor()
])
# Allowed File Extensions
ALLOWED_EXTENSIONS = {"pdf", "docx", "pptx", "xlsx"}
def validate_file_type(file):
ext = file.name.split(".")[-1].lower()
print(f"πŸ” Validating file type: {ext}")
if ext not in ALLOWED_EXTENSIONS:
return f"❌ Unsupported file format: {ext}"
return None
# Function to truncate text to 450 tokens
def truncate_text(text, max_tokens=450):
words = text.split()
truncated = " ".join(words[:max_tokens])
print(f"βœ‚οΈ Truncated text to {max_tokens} tokens.")
return truncated
# Document Text Extraction Functions
def extract_text_from_pdf(pdf_file):
try:
print("πŸ“„ Extracting text from PDF...")
doc = fitz.open(pdf_file)
text = "\n".join([page.get_text("text") for page in doc])
print("βœ… PDF text extraction completed.")
return text if text else "⚠️ No text found."
except Exception as e:
return f"❌ Error reading PDF: {str(e)}"
def extract_text_with_tika(file):
try:
print("πŸ“ Extracting text with Tika...")
parsed = parser.from_buffer(file)
print("βœ… Tika text extraction completed.")
return parsed.get("content", "⚠️ No text found.").strip()
except Exception as e:
return f"❌ Error reading document: {str(e)}"
def extract_text_from_pptx(pptx_file):
try:
print("πŸ“Š Extracting text from PPTX...")
ppt = Presentation(pptx_file)
text = []
for slide in ppt.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
text.append(shape.text)
print("βœ… PPTX text extraction completed.")
return "\n".join(text) if text else "⚠️ No text found."
except Exception as e:
return f"❌ Error reading PPTX: {str(e)}"
def extract_text_from_excel(excel_file):
try:
print("πŸ“Š Extracting text from Excel...")
wb = openpyxl.load_workbook(excel_file, read_only=True)
text = []
for sheet in wb.worksheets:
for row in sheet.iter_rows(values_only=True):
text.append(" ".join(map(str, row)))
print("βœ… Excel text extraction completed.")
return "\n".join(text) if text else "⚠️ No text found."
except Exception as e:
return f"❌ Error reading Excel: {str(e)}"
def answer_question_from_document(file, question):
print("πŸ“‚ Processing document for QA...")
validation_error = validate_file_type(file)
if validation_error:
return validation_error
file_ext = file.name.split(".")[-1].lower()
if file_ext == "pdf":
text = extract_text_from_pdf(file)
elif file_ext in ["docx", "pptx"]:
text = extract_text_with_tika(file)
elif file_ext == "xlsx":
text = extract_text_from_excel(file)
else:
return "❌ Unsupported file format!"
if not text:
return "⚠️ No text extracted from the document."
truncated_text = truncate_text(text)
print("πŸ€– Generating response...")
response = qa_pipeline(f"Question: {question}\nContext: {truncated_text}")
print("βœ… AI response generated.")
return response[0]["generated_text"]
print("βœ… Models loaded successfully.")
doc_interface = gr.Interface(fn=answer_question_from_document, inputs=[gr.File(), gr.Textbox()], outputs="text")
demo = gr.TabbedInterface([doc_interface], ["Document QA"])
app = gr.mount_gradio_app(app, demo, path="/")
@app.get("/")
def home():
return RedirectResponse(url="/")
"""import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from fastapi import FastAPI
from transformers import pipeline
from fastapi.responses import RedirectResponse
import io
import ast
from PIL import Image
import re
# βœ… Load AI models
print("πŸš€ Initializing application...")
table_analyzer = pipeline("question-answering", model="deepset/tinyroberta-squad2", device=-1)
code_generator = pipeline("text-generation", model="distilgpt2", device=-1)
print("βœ… AI models loaded successfully!")
# βœ… Initialize FastAPI
app = FastAPI()
def generate_visualization(excel_file, viz_type, user_request):
Generates Python visualization code and insights based on user requests and Excel data.
try:
print("πŸ“‚ Loading Excel file...")
df = pd.read_excel(excel_file)
print("βœ… File loaded successfully! Columns:", df.columns)
# Convert date columns
for col in df.select_dtypes(include=["object", "datetime64"]):
try:
df[col] = pd.to_datetime(df[col], errors='coerce').dt.strftime('%Y-%m-%d %H:%M:%S')
except Exception:
pass
df = df.fillna(0) # Fill NaN values
formatted_table = [{col: str(value) for col, value in row.items()} for row in df.to_dict(orient="records")]
print(f"πŸ“Š Formatted table: {formatted_table[:5]}")
print(f"πŸ” User request: {user_request}")
if not isinstance(user_request, str):
raise ValueError("User request must be a string")
print("🧠 Sending data to TAPAS model for analysis...")
table_answer = table_analyzer({"table": formatted_table, "query": user_request})
print("βœ… Table analysis completed!")
# βœ… AI-generated code
prompt = f Generate clean and executable Python code to visualize the following dataset:
Columns: {list(df.columns)}
Visualization type: {viz_type}
User request: {user_request}
Use the provided DataFrame 'df' without reloading it.
Ensure 'plt.show()' is at the end.
print("πŸ€– Sending request to AI code generator...")
generated_code = code_generator(prompt, max_length=200)[0]['generated_text']
print("πŸ“ AI-generated code:")
print(generated_code)
# βœ… Validate generated code
valid_syntax = re.match(r".*plt\.show\(\).*", generated_code, re.DOTALL)
if not valid_syntax:
print("⚠️ AI code generation failed! Using fallback visualization...")
return generated_code, "Error: The AI did not generate a valid Matplotlib script."
try:
ast.parse(generated_code) # Syntax validation
except SyntaxError as e:
return generated_code, f"Syntax error: {e}"
# βœ… Execute AI-generated code
try:
print("⚑ Executing AI-generated code...")
exec_globals = {"plt": plt, "sns": sns, "pd": pd, "df": df.copy(), "io": io}
exec(generated_code, exec_globals)
fig = plt.gcf()
img_buf = io.BytesIO()
fig.savefig(img_buf, format='png')
img_buf.seek(0)
plt.close(fig)
except Exception as e:
print(f"❌ Error executing AI-generated code: {str(e)}")
return generated_code, f"Error executing visualization: {str(e)}"
img = Image.open(img_buf)
return generated_code, img
except Exception as e:
print(f"❌ An error occurred: {str(e)}")
return f"Error: {str(e)}", "Table analysis failed."
# βœ… Gradio UI setup
print("πŸ› οΈ Setting up Gradio interface...")
gradio_ui = gr.Interface(
fn=generate_visualization,
inputs=[
gr.File(label="Upload Excel File"),
gr.Radio([
"Bar Chart", "Line Chart", "Scatter Plot", "Histogram",
"Boxplot", "Heatmap", "Pie Chart", "Area Chart", "Bubble Chart", "Violin Plot"
], label="Select Visualization Type"),
gr.Textbox(label="Enter visualization request (e.g., 'Sales trend over time')")
],
outputs=[
gr.Code(label="Generated Python Code"),
gr.Image(label="Visualization Result")
],
title="AI-Powered Data Visualization πŸ“Š",
description="Upload an Excel file, choose your visualization type, and ask a question about your data!"
)
print("βœ… Gradio interface configured successfully!")
# βœ… Mount Gradio app
print("πŸ”— Mounting Gradio interface on FastAPI...")
app = gr.mount_gradio_app(app, gradio_ui, path="/")
print("βœ… Gradio interface mounted successfully!")
@app.get("/")
def home():
print("🏠 Redirecting to UI...")
return RedirectResponse(url="/")"""