qtAnswering / app.py
ikraamkb's picture
Update app.py
5535b2b verified
raw
history blame
4.04 kB
import gradio as gr
import uvicorn
import numpy as np
import fitz # PyMuPDF
import tika
import torch
from fastapi import FastAPI
from transformers import pipeline
from PIL import Image
from io import BytesIO
from starlette.responses import RedirectResponse
from tika import parser
from openpyxl import load_workbook
# Initialize Tika for DOCX & PPTX parsing
tika.initVM()
# Initialize FastAPI
app = FastAPI()
# Load models
device = "cuda" if torch.cuda.is_available() else "cpu"
qa_pipeline = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", device=device)
image_captioning_pipeline = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
ALLOWED_EXTENSIONS = {"pdf", "docx", "pptx", "xlsx"}
# βœ… Function to Validate File Type
def validate_file_type(file):
if isinstance(file, str): # Text-based input (NamedString)
return None
if hasattr(file, "name"):
ext = file.name.split(".")[-1].lower()
if ext not in ALLOWED_EXTENSIONS:
return f"❌ Unsupported file format: {ext}"
return None
return "❌ Invalid file format!"
# βœ… Extract Text from PDF
def extract_text_from_pdf(pdf_bytes):
doc = fitz.open(stream=pdf_bytes, filetype="pdf")
return "\n".join([page.get_text() for page in doc])
# βœ… Extract Text from DOCX & PPTX using Tika
def extract_text_with_tika(file_bytes):
return parser.from_buffer(file_bytes)["content"]
# βœ… Extract Text from Excel
def extract_text_from_excel(file_bytes):
wb = load_workbook(BytesIO(file_bytes), data_only=True)
text = []
for sheet in wb.worksheets:
for row in sheet.iter_rows(values_only=True):
text.append(" ".join(str(cell) for cell in row if cell))
return "\n".join(text)
# βœ… Truncate Long Text for Model
def truncate_text(text, max_length=2048):
return text[:max_length] if len(text) > max_length else text
# βœ… Answer Questions from Image or Document
def answer_question(file, question: str):
# Image Processing (Gradio sends images as NumPy arrays)
if isinstance(file, np.ndarray):
image = Image.fromarray(file)
caption = image_captioning_pipeline(image)[0]['generated_text']
response = qa_pipeline(f"Question: {question}\nContext: {caption}")
return response[0]["generated_text"]
# Validate File
validation_error = validate_file_type(file)
if validation_error:
return validation_error
file_ext = file.name.split(".")[-1].lower() if hasattr(file, "name") else None
file_bytes = file.read() if hasattr(file, "read") else None
if not file_bytes:
return "❌ Could not read file content!"
# Extract Text from Supported Documents
if file_ext == "pdf":
text = extract_text_from_pdf(file_bytes)
elif file_ext in ["docx", "pptx"]:
text = extract_text_with_tika(file_bytes)
elif file_ext == "xlsx":
text = extract_text_from_excel(file_bytes)
else:
return "❌ Unsupported file format!"
if not text:
return "⚠️ No text extracted from the document."
truncated_text = truncate_text(text)
response = qa_pipeline(f"Question: {question}\nContext: {truncated_text}")
return response[0]["generated_text"]
# βœ… Gradio Interface (Unified for Images & Documents)
with gr.Blocks() as demo:
gr.Markdown("## πŸ“„ AI-Powered Document & Image QA")
with gr.Row():
file_input = gr.File(label="Upload Document / Image")
question_input = gr.Textbox(label="Ask a Question", placeholder="What is this document about?")
answer_output = gr.Textbox(label="Answer")
submit_btn = gr.Button("Get Answer")
submit_btn.click(answer_question, inputs=[file_input, question_input], outputs=answer_output)
# βœ… Mount Gradio with FastAPI
app = gr.mount_gradio_app(app, demo, path="/")
@app.get("/")
def home():
return RedirectResponse(url="/")
# βœ… Run FastAPI + Gradio
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)