qtAnswering / app.py
ikraamkb's picture
Update app.py
01e07b6 verified
raw
history blame
4.85 kB
from fastapi import FastAPI, File, UploadFile
import fitz # PyMuPDF for PDF parsing
from tika import parser # Apache Tika for document parsing
import openpyxl
from pptx import Presentation
import torch
from torchvision import transforms
from torchvision.models.detection import fasterrcnn_resnet50_fpn
from PIL import Image
from transformers import pipeline
import gradio as gr
from fastapi.responses import RedirectResponse
import numpy as np
import easyocr
# Initialize FastAPI
app = FastAPI()
# Load AI Model for Question Answering (DeepSeek-V2-Chat)
qa_pipeline = pipeline("text-generation", model="microsoft/phi-2")
# Load Pretrained Object Detection Model (if needed)
model = fasterrcnn_resnet50_fpn(pretrained=True)
model.eval()
# Initialize OCR Model (Lazy Load)
reader = easyocr.Reader(["en"], gpu=True)
# Image Transformations
transform = transforms.Compose([
transforms.ToTensor()
])
# Allowed File Extensions
ALLOWED_EXTENSIONS = {"pdf", "docx", "pptx", "xlsx"}
def validate_file_type(file):
ext = file.name.split(".")[-1].lower()
if ext not in ALLOWED_EXTENSIONS:
return f"Unsupported file format: {ext}"
return None
# Function to truncate text to 450 tokens
def truncate_text(text, max_tokens=450):
words = text.split()
return " ".join(words[:max_tokens])
# Document Text Extraction Functions
def extract_text_from_pdf(pdf_file):
try:
doc = fitz.open(pdf_file)
text = "\n".join([page.get_text("text") for page in doc])
return text if text else "No text found."
except Exception as e:
return f"Error reading PDF: {str(e)}"
def extract_text_with_tika(file):
try:
parsed = parser.from_buffer(file)
return parsed.get("content", "No text found.").strip()
except Exception as e:
return f"Error reading document: {str(e)}"
def extract_text_from_pptx(pptx_file):
try:
ppt = Presentation(pptx_file)
text = []
for slide in ppt.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
text.append(shape.text)
return "\n".join(text) if text else "No text found."
except Exception as e:
return f"Error reading PPTX: {str(e)}"
def extract_text_from_excel(excel_file):
try:
wb = openpyxl.load_workbook(excel_file, read_only=True)
text = []
for sheet in wb.worksheets:
for row in sheet.iter_rows(values_only=True):
text.append(" ".join(map(str, row)))
return "\n".join(text) if text else "No text found."
except Exception as e:
return f"Error reading Excel: {str(e)}"
def extract_text_from_image(image_file):
image = Image.open(image_file).convert("RGB")
if np.array(image).std() < 10: # Low contrast = likely empty
return "No meaningful content detected in the image."
result = reader.readtext(np.array(image))
return " ".join([res[1] for res in result]) if result else "No text found."
# Function to answer questions based on document content
def answer_question_from_document(file, question):
validation_error = validate_file_type(file)
if validation_error:
return validation_error
file_ext = file.name.split(".")[-1].lower()
if file_ext == "pdf":
text = extract_text_from_pdf(file)
elif file_ext in ["docx", "pptx"]:
text = extract_text_with_tika(file)
elif file_ext == "xlsx":
text = extract_text_from_excel(file)
else:
return "Unsupported file format!"
if not text:
return "No text extracted from the document."
truncated_text = truncate_text(text)
response = qa_pipeline(f"Question: {question}\nContext: {truncated_text}")
return response[0]["generated_text"]
def answer_question_from_image(image, question):
image_text = extract_text_from_image(image)
if not image_text:
return "No meaningful content detected in the image."
truncated_text = truncate_text(image_text)
response = qa_pipeline(f"Question: {question}\nContext: {truncated_text}")
return response[0]["generated_text"]
# Gradio UI for Document & Image QA
doc_interface = gr.Interface(
fn=answer_question_from_document,
inputs=[gr.File(label="Upload Document"), gr.Textbox(label="Ask a Question")],
outputs="text",
title="AI Document Question Answering"
)
img_interface = gr.Interface(
fn=answer_question_from_image,
inputs=[gr.Image(label="Upload Image"), gr.Textbox(label="Ask a Question")],
outputs="text",
title="AI Image Question Answering"
)
# Mount Gradio Interfaces
demo = gr.TabbedInterface([doc_interface, img_interface], ["Document QA", "Image QA"])
app = gr.mount_gradio_app(app, demo, path="/")
@app.get("/")
def home():
return RedirectResponse(url="/")