Spaces:
Running
Running
File size: 6,090 Bytes
7e5ddc3 2852c90 2be14bd dbe3ba4 2be14bd a5ffabc 0c9548a 8e24199 39b3aed 7e5ddc3 2be14bd 2852c90 239c804 8e24199 239c804 8e24199 dbe3ba4 8e24199 dbe3ba4 8e24199 d2931fe 8e24199 d2931fe 8e24199 7e5ddc3 c724805 d2931fe 2be14bd 2852c90 2be14bd 8e24199 d2931fe 2852c90 d2931fe 8e24199 d2931fe 2be14bd 2852c90 8e24199 d2931fe 2852c90 d2931fe 8e24199 d2931fe 2be14bd 8e24199 d2931fe 8e24199 d2931fe 8e24199 d2931fe 2be14bd 8e24199 d2931fe 8e24199 d2931fe 8e24199 d2931fe 8e24199 7e5ddc3 d2931fe 8e24199 d2931fe 8e24199 d2931fe 7e5ddc3 8e24199 a5ffabc d2931fe 8e24199 2be14bd 8e24199 2be14bd a5ffabc 2852c90 2be14bd a5ffabc 2be14bd d2931fe 8e24199 2be14bd d2931fe 7e5ddc3 d2931fe 2852c90 7e5ddc3 2852c90 2be14bd 7e5ddc3 d2931fe 7e5ddc3 d2931fe 7e5ddc3 d2931fe 2852c90 7e5ddc3 2852c90 a5ffabc 7e5ddc3 a5ffabc d2931fe a5ffabc d2931fe a5ffabc 7e5ddc3 d2931fe 7e5ddc3 d2931fe 7e5ddc3 d2931fe a5ffabc 2be14bd a5ffabc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
from fastapi import FastAPI, File, UploadFile
import fitz # PyMuPDF for PDF parsing
from tika import parser # Apache Tika for document parsing
import openpyxl
from pptx import Presentation
import torch
from torchvision import transforms
from torchvision.models.detection import fasterrcnn_resnet50_fpn
from PIL import Image
from transformers import pipeline
import gradio as gr
from fastapi.responses import RedirectResponse
import numpy as np
import easyocr
# Initialize FastAPI
app = FastAPI()
# Load AI Model for Question Answering (DeepSeek-V2-Chat)
from transformers import AutoModelForCausalLM, AutoTokenizer
# Preload Hugging Face model
model_name = "microsoft/phi-2"
print(f"π Loading model: {model_name}...")
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
qa_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer, device=device)
# Load Pretrained Object Detection Model (Torchvision)
from torchvision.models.detection import FasterRCNN_ResNet50_FPN_Weights
weights = FasterRCNN_ResNet50_FPN_Weights.DEFAULT
model = fasterrcnn_resnet50_fpn(weights=weights)
model.eval()
# Load Pretrained Object Detection Model (if needed)
model = fasterrcnn_resnet50_fpn(pretrained=True)
model.eval()
# Initialize OCR Model (Lazy Load)
reader = easyocr.Reader(["en"], gpu=True)
# Image Transformations
transform = transforms.Compose([
transforms.ToTensor()
])
# Allowed File Extensions
ALLOWED_EXTENSIONS = {"pdf", "docx", "pptx", "xlsx"}
def validate_file_type(file):
ext = file.name.split(".")[-1].lower()
print(f"π Validating file type: {ext}")
if ext not in ALLOWED_EXTENSIONS:
return f"β Unsupported file format: {ext}"
return None
# Function to truncate text to 450 tokens
def truncate_text(text, max_tokens=450):
words = text.split()
truncated = " ".join(words[:max_tokens])
print(f"βοΈ Truncated text to {max_tokens} tokens.")
return truncated
# Document Text Extraction Functions
def extract_text_from_pdf(pdf_file):
try:
print("π Extracting text from PDF...")
doc = fitz.open(pdf_file)
text = "\n".join([page.get_text("text") for page in doc])
return text if text else "β οΈ No text found."
except Exception as e:
return f"β Error reading PDF: {str(e)}"
def extract_text_with_tika(file):
try:
print("π Extracting text with Tika...")
parsed = parser.from_buffer(file)
return parsed.get("content", "β οΈ No text found.").strip()
except Exception as e:
return f"β Error reading document: {str(e)}"
def extract_text_from_pptx(pptx_file):
try:
print("π Extracting text from PPTX...")
ppt = Presentation(pptx_file)
text = []
for slide in ppt.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
text.append(shape.text)
return "\n".join(text) if text else "β οΈ No text found."
except Exception as e:
return f"β Error reading PPTX: {str(e)}"
def extract_text_from_excel(excel_file):
try:
print("π Extracting text from Excel...")
wb = openpyxl.load_workbook(excel_file, read_only=True)
text = []
for sheet in wb.worksheets:
for row in sheet.iter_rows(values_only=True):
text.append(" ".join(map(str, row)))
return "\n".join(text) if text else "β οΈ No text found."
except Exception as e:
return f"β Error reading Excel: {str(e)}"
def extract_text_from_image(image_file):
print("πΌοΈ Extracting text from image...")
image = Image.open(image_file).convert("RGB")
if np.array(image).std() < 10: # Low contrast = likely empty
return "β οΈ No meaningful content detected in the image."
result = reader.readtext(np.array(image))
return " ".join([res[1] for res in result]) if result else "β οΈ No text found."
# Function to answer questions based on document content
def answer_question_from_document(file, question):
print("π Processing document for QA...")
validation_error = validate_file_type(file)
if validation_error:
return validation_error
file_ext = file.name.split(".")[-1].lower()
if file_ext == "pdf":
text = extract_text_from_pdf(file)
elif file_ext in ["docx", "pptx"]:
text = extract_text_with_tika(file)
elif file_ext == "xlsx":
text = extract_text_from_excel(file)
else:
return "β Unsupported file format!"
if not text:
return "β οΈ No text extracted from the document."
truncated_text = truncate_text(text)
print("π€ Generating response...")
response = qa_pipeline(f"Question: {question}\nContext: {truncated_text}")
return response[0]["generated_text"]
def answer_question_from_image(image, question):
print("πΌοΈ Processing image for QA...")
image_text = extract_text_from_image(image)
if not image_text:
return "β οΈ No meaningful content detected in the image."
truncated_text = truncate_text(image_text)
print("π€ Generating response...")
response = qa_pipeline(f"Question: {question}\nContext: {truncated_text}")
return response[0]["generated_text"]
# Gradio UI for Document & Image QA
doc_interface = gr.Interface(
fn=answer_question_from_document,
inputs=[gr.File(label="π Upload Document"), gr.Textbox(label="π¬ Ask a Question")],
outputs="text",
title="π AI Document Question Answering"
)
img_interface = gr.Interface(
fn=answer_question_from_image,
inputs=[gr.Image(label="πΌοΈ Upload Image"), gr.Textbox(label="π¬ Ask a Question")],
outputs="text",
title="πΌοΈ AI Image Question Answering"
)
# Mount Gradio Interfaces
demo = gr.TabbedInterface([doc_interface, img_interface], ["π Document QA", "πΌοΈ Image QA"])
app = gr.mount_gradio_app(app, demo, path="/")
@app.get("/")
def home():
return RedirectResponse(url="/")
|