Spaces:
Running
Running
File size: 6,897 Bytes
935d12d ffda1f9 a768964 ffda1f9 a768964 ffda1f9 a768964 ffda1f9 a768964 ffda1f9 a768964 ffda1f9 da9e0ce a768964 ffda1f9 a768964 ffda1f9 a768964 da9e0ce ffda1f9 a768964 ffda1f9 da9e0ce ffda1f9 a768964 ffda1f9 da9e0ce ffda1f9 a768964 ffda1f9 da9e0ce a768964 ffda1f9 da9e0ce ffda1f9 da9e0ce ffda1f9 a768964 ffda1f9 a768964 ffda1f9 da9e0ce a768964 da9e0ce a768964 ffda1f9 1e4a65e 935d12d 7a6dca4 935d12d 7a6dca4 935d12d 7a6dca4 935d12d 7a6dca4 935d12d 7a6dca4 935d12d 7a6dca4 935d12d 7a6dca4 935d12d 7a6dca4 935d12d 7a6dca4 935d12d 7a6dca4 935d12d 7a6dca4 935d12d 7a6dca4 935d12d 7a6dca4 935d12d 7a6dca4 935d12d 7a6dca4 935d12d 7a6dca4 935d12d 7a6dca4 935d12d 7a6dca4 70781e0 7a6dca4 5c47c0f 935d12d 7a6dca4 935d12d 7a6dca4 935d12d 7a6dca4 935d12d 5c47c0f 935d12d 7a6dca4 5c47c0f 935d12d 5c47c0f 7a6dca4 aaad936 7a6dca4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
"""from fastapi import FastAPI, Form, File, UploadFile
from fastapi.responses import RedirectResponse
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel
from transformers import pipeline
import os
from PIL import Image
import io
import pdfplumber
import docx
import openpyxl
import pytesseract
from io import BytesIO
import fitz # PyMuPDF
import easyocr
from fastapi.templating import Jinja2Templates
from starlette.requests import Request
# Initialize the app
app = FastAPI()
# Mount the static directory to serve HTML, CSS, JS files
app.mount("/static", StaticFiles(directory="static"), name="static")
# Initialize transformers pipelines
qa_pipeline = pipeline("question-answering", model="microsoft/phi-2", tokenizer="microsoft/phi-2")
image_qa_pipeline = pipeline("vqa", model="Salesforce/blip-vqa-base")
# Initialize EasyOCR for image-based text extraction
reader = easyocr.Reader(['en'])
# Define a template for rendering HTML
templates = Jinja2Templates(directory="templates")
# Ensure temp_files directory exists
temp_dir = "temp_files"
os.makedirs(temp_dir, exist_ok=True)
# Function to process PDFs
def extract_pdf_text(file_path: str):
with pdfplumber.open(file_path) as pdf:
text = ""
for page in pdf.pages:
text += page.extract_text()
return text
# Function to process DOCX files
def extract_docx_text(file_path: str):
doc = docx.Document(file_path)
text = "\n".join([para.text for para in doc.paragraphs])
return text
# Function to process PPTX files
def extract_pptx_text(file_path: str):
from pptx import Presentation
prs = Presentation(file_path)
text = "\n".join([shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text")])
return text
# Function to extract text from images using OCR
def extract_text_from_image(image: Image):
return pytesseract.image_to_string(image)
# Home route
@app.get("/")
def home():
return RedirectResponse(url="/docs")
# Function to answer questions based on document content
@app.post("/question-answering-doc")
async def question_answering_doc(question: str = Form(...), file: UploadFile = File(...)):
file_path = os.path.join(temp_dir, file.filename)
with open(file_path, "wb") as f:
f.write(await file.read())
if file.filename.endswith(".pdf"):
text = extract_pdf_text(file_path)
elif file.filename.endswith(".docx"):
text = extract_docx_text(file_path)
elif file.filename.endswith(".pptx"):
text = extract_pptx_text(file_path)
else:
return {"error": "Unsupported file format"}
qa_result = qa_pipeline(question=question, context=text)
return {"answer": qa_result['answer']}
# Function to answer questions based on images
@app.post("/question-answering-image")
async def question_answering_image(question: str = Form(...), image_file: UploadFile = File(...)):
image = Image.open(BytesIO(await image_file.read()))
image_text = extract_text_from_image(image)
image_qa_result = image_qa_pipeline({"image": image, "question": question})
return {"answer": image_qa_result[0]['answer'], "image_text": image_text}
# Serve the application in Hugging Face space
@app.get("/docs")
async def get_docs(request: Request):
return templates.TemplateResponse("index.html", {"request": request})
"""
from fastapi import FastAPI, Form, File, UploadFile
from fastapi.responses import RedirectResponse
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel
from transformers import pipeline
import os
from PIL import Image
import io
import pdfplumber
import docx
import pytesseract
from io import BytesIO
import fitz # PyMuPDF
import easyocr
from fastapi.templating import Jinja2Templates
from starlette.requests import Request
# Initialize the app
app = FastAPI()
# Mount the static directory to serve HTML, CSS, JS files
app.mount("/static", StaticFiles(directory="static"), name="static")
# Initialize transformers pipelines
qa_pipeline = pipeline("question-answering", model="microsoft/phi-2", tokenizer="microsoft/phi-2")
image_qa_pipeline = pipeline("vqa", model="Salesforce/blip-vqa-base")
# Initialize EasyOCR for image-based text extraction
reader = easyocr.Reader(['en'])
# Define a template for rendering HTML
templates = Jinja2Templates(directory="templates")
# Ensure temp_files directory exists
temp_dir = "temp_files"
os.makedirs(temp_dir, exist_ok=True)
# Function to process PDFs
def extract_pdf_text(file_path: str):
with pdfplumber.open(file_path) as pdf:
text = ""
for page in pdf.pages:
text += page.extract_text()
return text
# Function to process DOCX files
def extract_docx_text(file_path: str):
doc = docx.Document(file_path)
text = "\n".join([para.text for para in doc.paragraphs])
return text
# Function to process PPTX files
def extract_pptx_text(file_path: str):
from pptx import Presentation
prs = Presentation(file_path)
text = "\n".join([shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text")])
return text
# Function to extract text from images using OCR
def extract_text_from_image(image: Image):
return pytesseract.image_to_string(image)
# Home route
@app.get("/")
def home():
return RedirectResponse(url="/docs")
# Function to answer questions based on document content
@app.post("/question-answering-doc")
async def question_answering_doc(request: Request, question: str = Form(...), file: UploadFile = File(...)):
file_path = os.path.join(temp_dir, file.filename)
with open(file_path, "wb") as f:
f.write(await file.read())
if file.filename.endswith(".pdf"):
text = extract_pdf_text(file_path)
elif file.filename.endswith(".docx"):
text = extract_docx_text(file_path)
elif file.filename.endswith(".pptx"):
text = extract_pptx_text(file_path)
else:
return {"error": "Unsupported file format"}
qa_result = qa_pipeline(question=question, context=text)
return templates.TemplateResponse("index.html", {"request": request, "answer": qa_result['answer']})
# Function to answer questions based on images
@app.post("/question-answering-image")
async def question_answering_image(request: Request, question: str = Form(...), image_file: UploadFile = File(...)):
image = Image.open(BytesIO(await image_file.read()))
image_text = extract_text_from_image(image)
image_qa_result = image_qa_pipeline({"image": image, "question": question})
return templates.TemplateResponse("index.html", {"request": request, "answer": image_qa_result[0]['answer'], "image_text": image_text})
# Serve the application in Hugging Face space
@app.get("/question-answering-doc")
async def get_docs(request: Request):
return templates.TemplateResponse("index.html", {"request": request})
|