# app.py """from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM import fitz, docx, pptx, openpyxl, re, nltk, tempfile, os, easyocr, datetime, hashlib from nltk.tokenize import sent_tokenize from fpdf import FPDF from gtts import gTTS nltk.download('punkt', quiet=True) # Load models MODEL_NAME = "facebook/bart-large-cnn" tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME) model.eval() summarizer = pipeline("summarization", model=model, tokenizer=tokenizer, device=-1, batch_size=4) reader = easyocr.Reader(['en'], gpu=False) summary_cache = {} def clean_text(text: str) -> str: text = re.sub(r'\s+', ' ', text) text = re.sub(r'\u2022\s*|\d\.\s+', '', text) text = re.sub(r'\[.*?\]|\(.*?\)', '', text) text = re.sub(r'\bPage\s*\d+\b', '', text, flags=re.IGNORECASE) return text.strip() def extract_text(file_path: str, ext: str): try: if ext == "pdf": with fitz.open(file_path) as doc: text = "\n".join(page.get_text("text") for page in doc) if len(text.strip()) < 50: images = [page.get_pixmap() for page in doc] temp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False) images[0].save(temp_img.name) text = "\n".join(reader.readtext(temp_img.name, detail=0)) os.unlink(temp_img.name) elif ext == "docx": doc = docx.Document(file_path) text = "\n".join(p.text for p in doc.paragraphs) elif ext == "pptx": prs = pptx.Presentation(file_path) text = "\n".join(shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text")) elif ext == "xlsx": wb = openpyxl.load_workbook(file_path, read_only=True) text = "\n".join([" ".join(str(cell) for cell in row if cell) for sheet in wb.sheetnames for row in wb[sheet].iter_rows(values_only=True)]) else: text = "" except Exception as e: return "", f"Error extracting text: {str(e)}" return clean_text(text), "" def chunk_text(text: str, max_tokens: int = 950): sentences = sent_tokenize(text) chunks, current_chunk = [], "" for sentence in sentences: if len(tokenizer.encode(current_chunk + " " + sentence)) <= max_tokens: current_chunk += " " + sentence else: chunks.append(current_chunk.strip()) current_chunk = sentence if current_chunk: chunks.append(current_chunk.strip()) return chunks def generate_summary(text: str, length: str = "medium"): cache_key = hashlib.md5((text + length).encode()).hexdigest() if cache_key in summary_cache: return summary_cache[cache_key] length_params = { "short": {"max_length": 80, "min_length": 30}, "medium": {"max_length": 200, "min_length": 80}, "long": {"max_length": 300, "min_length": 210} } chunks = chunk_text(text) summaries = summarizer( chunks, max_length=length_params[length]["max_length"], min_length=length_params[length]["min_length"], do_sample=False, truncation=True, no_repeat_ngram_size=2, num_beams=2, early_stopping=True ) final_summary = " ".join(s['summary_text'] for s in summaries) final_summary = ". ".join(s.strip().capitalize() for s in final_summary.split(". ") if s.strip()) final_summary = final_summary if len(final_summary) > 25 else "Summary too short." summary_cache[cache_key] = final_summary return final_summary def text_to_speech(text: str): try: tts = gTTS(text) temp_audio = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") tts.save(temp_audio.name) return temp_audio.name except: return "" def create_pdf(summary: str, filename: str): try: pdf = FPDF() pdf.add_page() pdf.set_font("Arial", size=12) pdf.multi_cell(0, 10, summary) temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") pdf.output(temp_pdf.name) return temp_pdf.name except: return "" async def summarize_document(file, length="medium"): contents = await file.read() with tempfile.NamedTemporaryFile(delete=False) as tmp_file: tmp_file.write(contents) tmp_path = tmp_file.name ext = file.filename.split('.')[-1].lower() text, error = extract_text(tmp_path, ext) if error: raise Exception(error) if not text or len(text.split()) < 30: raise Exception("Document too short to summarize.") summary = generate_summary(text, length) audio_path = text_to_speech(summary) pdf_path = create_pdf(summary, file.filename) result = {"summary": summary} if audio_path: result["audioUrl"] = f"/files/{os.path.basename(audio_path)}" if pdf_path: result["pdfUrl"] = f"/files/{os.path.basename(pdf_path)}" return result""" # app.py from fastapi import UploadFile, File from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM import fitz # PyMuPDF import docx import pptx import openpyxl import re import nltk import torch from nltk.tokenize import sent_tokenize from gtts import gTTS from fpdf import FPDF import tempfile import os import easyocr import datetime import hashlib # Setup nltk.download('punkt', quiet=True) # Load Models MODEL_NAME = "facebook/bart-large-cnn" tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME) model.eval() summarizer = pipeline("summarization", model=model, tokenizer=tokenizer, device=-1, batch_size=4) reader = easyocr.Reader(['en','fr'], gpu=torch.cuda.is_available()) summary_cache = {} # Allowed file extensions ALLOWED_EXTENSIONS = {'pdf', 'docx', 'pptx', 'xlsx'} # --- Helper Functions --- def clean_text(text: str) -> str: text = re.sub(r'\s+', ' ', text) text = re.sub(r'\u2022\s*|\d\.\s+', '', text) text = re.sub(r'\[.*?\]|\(.*?\)', '', text) text = re.sub(r'\bPage\s*\d+\b', '', text, flags=re.IGNORECASE) return text.strip() def extract_text(file_path: str, extension: str): try: if extension == "pdf": with fitz.open(file_path) as doc: text = "\n".join(page.get_text("text") for page in doc) if len(text.strip()) < 50: images = [page.get_pixmap() for page in doc] temp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False) images[0].save(temp_img.name) ocr_result = reader.readtext(temp_img.name, detail=0) os.unlink(temp_img.name) text = "\n".join(ocr_result) if ocr_result else text elif extension == "docx": doc = docx.Document(file_path) text = "\n".join(p.text for p in doc.paragraphs) elif extension == "pptx": prs = pptx.Presentation(file_path) text = "\n".join(shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text")) elif extension == "xlsx": wb = openpyxl.load_workbook(file_path, read_only=True) text = "\n".join( [" ".join(str(cell) for cell in row if cell) for sheet in wb.sheetnames for row in wb[sheet].iter_rows(values_only=True)] ) else: return "", "Unsupported file format." return clean_text(text), "" except Exception as e: return "", f"Error reading {extension.upper()} file: {str(e)}" def chunk_text(text: str, max_tokens: int = 950): try: sentences = sent_tokenize(text) except: words = text.split() sentences = [' '.join(words[i:i+20]) for i in range(0, len(words), 20)] chunks = [] current_chunk = "" for sentence in sentences: token_length = len(tokenizer.encode(current_chunk + " " + sentence)) if token_length <= max_tokens: current_chunk += " " + sentence else: if current_chunk.strip(): chunks.append(current_chunk.strip()) current_chunk = sentence if current_chunk.strip(): chunks.append(current_chunk.strip()) return chunks def generate_summary(text: str, length: str = "medium"): cache_key = hashlib.md5((text + length).encode()).hexdigest() if cache_key in summary_cache: return summary_cache[cache_key] length_params = { "short": {"max_length": 50, "min_length": 30}, "medium": {"max_length": 200, "min_length": 80}, "long": {"max_length": 300, "min_length": 210} } chunks = chunk_text(text) summaries = summarizer( chunks, max_length=length_params[length]["max_length"], min_length=length_params[length]["min_length"], do_sample=False, truncation=True, no_repeat_ngram_size=2, num_beams=2, early_stopping=True ) summary_texts = [s['summary_text'] for s in summaries] final_summary = " ".join(summary_texts) final_summary = ". ".join(s.strip().capitalize() for s in final_summary.split(". ") if s.strip()) final_summary = final_summary if len(final_summary) > 25 else "Summary too short - document may be too brief" summary_cache[cache_key] = final_summary return final_summary def text_to_speech(text: str): try: tts = gTTS(text) temp_audio = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") tts.save(temp_audio.name) return temp_audio.name except Exception: return "" def create_pdf(summary: str, filename: str): try: pdf = FPDF() pdf.add_page() pdf.set_font("Arial", 'B', 16) pdf.cell(200, 10, txt=f"Summary of {filename}", ln=1, align='C') pdf.set_font("Arial", size=12) pdf.cell(200, 10, txt=f"Generated on: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=1) pdf.ln(10) pdf.set_font("Arial", size=10) pdf.multi_cell(0, 10, txt=summary) temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") pdf.output(temp_pdf.name) return temp_pdf.name except Exception: return "" # --- Public API Function --- async def summarize_document(file: UploadFile, length: str = "medium"): try: filename = file.filename extension = os.path.splitext(filename)[-1].lower().replace('.', '') if extension not in ALLOWED_EXTENSIONS: raise Exception(f"Unsupported file type: {extension.upper()}. Only PDF, DOCX, PPTX, XLSX are allowed.") # Save uploaded file with tempfile.NamedTemporaryFile(delete=False, suffix=f".{extension}") as tmp_file: tmp_file.write(await file.read()) tmp_path = tmp_file.name # Extract text text, error = extract_text(tmp_path, extension) if error: os.unlink(tmp_path) raise Exception(error) if not text or len(text.split()) < 30: os.unlink(tmp_path) raise Exception("Document too short to summarize.") # Summarize summary = generate_summary(text, length) # Create audio + PDF audio_path = text_to_speech(summary) pdf_path = create_pdf(summary, filename) # Clean temp file os.unlink(tmp_path) # Prepare response response = {"summary": summary} if audio_path: response["audioUrl"] = f"/files/{os.path.basename(audio_path)}" if pdf_path: response["pdfUrl"] = f"/files/{os.path.basename(pdf_path)}" return response except Exception as e: raise Exception(f"Summarization failed: {str(e)}")