Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
from fastapi.responses import HTMLResponse, JSONResponse, FileResponse
|
4 |
from fastapi.staticfiles import StaticFiles
|
@@ -72,301 +72,4 @@ async def predict(
|
|
72 |
else:
|
73 |
return JSONResponse({"error": "Invalid option"}, status_code=400)
|
74 |
except Exception as e:
|
75 |
-
return JSONResponse({"error": f"Prediction failed: {str(e)}"}, status_code=500)
|
76 |
-
from fastapi import FastAPI, UploadFile, File, Form, Request, HTTPException
|
77 |
-
from fastapi.responses import HTMLResponse, JSONResponse, FileResponse
|
78 |
-
from fastapi.staticfiles import StaticFiles
|
79 |
-
from fastapi.templating import Jinja2Templates
|
80 |
-
from fastapi.middleware.cors import CORSMiddleware
|
81 |
-
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, AutoProcessor, AutoModelForCausalLM
|
82 |
-
from PIL import Image
|
83 |
-
import torch
|
84 |
-
import fitz # PyMuPDF
|
85 |
-
import docx
|
86 |
-
import pptx
|
87 |
-
import openpyxl
|
88 |
-
import re
|
89 |
-
import nltk
|
90 |
-
from nltk.tokenize import sent_tokenize
|
91 |
-
from gtts import gTTS
|
92 |
-
from fpdf import FPDF
|
93 |
-
import tempfile
|
94 |
-
import os
|
95 |
-
import shutil
|
96 |
-
import datetime
|
97 |
-
import hashlib
|
98 |
-
import easyocr
|
99 |
-
from typing import Optional
|
100 |
-
|
101 |
-
# Initialize app
|
102 |
-
app = FastAPI()
|
103 |
-
|
104 |
-
# CORS Configuration
|
105 |
-
app.add_middleware(
|
106 |
-
CORSMiddleware,
|
107 |
-
allow_origins=["*"],
|
108 |
-
allow_credentials=True,
|
109 |
-
allow_methods=["*"],
|
110 |
-
allow_headers=["*"],
|
111 |
-
)
|
112 |
-
|
113 |
-
# Static assets
|
114 |
-
app.mount("/static", StaticFiles(directory="static"), name="static")
|
115 |
-
app.mount("/resources", StaticFiles(directory="resources"), name="resources")
|
116 |
-
|
117 |
-
# Templates
|
118 |
-
templates = Jinja2Templates(directory="templates")
|
119 |
-
|
120 |
-
# Initialize models
|
121 |
-
nltk.download('punkt', quiet=True)
|
122 |
-
|
123 |
-
# Document processing models
|
124 |
-
try:
|
125 |
-
tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
|
126 |
-
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn")
|
127 |
-
model.eval()
|
128 |
-
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer, device=-1)
|
129 |
-
reader = easyocr.Reader(['en'], gpu=torch.cuda.is_available())
|
130 |
-
except Exception as e:
|
131 |
-
print(f"Error loading summarization models: {e}")
|
132 |
-
summarizer = None
|
133 |
-
|
134 |
-
# Image captioning models
|
135 |
-
try:
|
136 |
-
processor = AutoProcessor.from_pretrained("microsoft/git-large-coco")
|
137 |
-
git_model = AutoModelForCausalLM.from_pretrained("microsoft/git-large-coco")
|
138 |
-
git_model.eval()
|
139 |
-
USE_GIT = True
|
140 |
-
except Exception as e:
|
141 |
-
print(f"Error loading GIT model, falling back to ViT: {e}")
|
142 |
-
captioner = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
|
143 |
-
USE_GIT = False
|
144 |
-
|
145 |
-
# Helper functions
|
146 |
-
def clean_text(text: str) -> str:
|
147 |
-
text = re.sub(r'\s+', ' ', text)
|
148 |
-
text = re.sub(r'\u2022\s*|\d\.\s+', '', text)
|
149 |
-
text = re.sub(r'\[.*?\]|\(.*?\)', '', text)
|
150 |
-
text = re.sub(r'\bPage\s*\d+\b', '', text, flags=re.IGNORECASE)
|
151 |
-
return text.strip()
|
152 |
-
|
153 |
-
def extract_text(file_path: str, file_extension: str):
|
154 |
-
try:
|
155 |
-
if file_extension == "pdf":
|
156 |
-
with fitz.open(file_path) as doc:
|
157 |
-
text = "\n".join(page.get_text("text") for page in doc)
|
158 |
-
if len(text.strip()) < 50:
|
159 |
-
images = [page.get_pixmap() for page in doc]
|
160 |
-
temp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
161 |
-
images[0].save(temp_img.name)
|
162 |
-
ocr_result = reader.readtext(temp_img.name, detail=0)
|
163 |
-
os.unlink(temp_img.name)
|
164 |
-
text = "\n".join(ocr_result) if ocr_result else text
|
165 |
-
return clean_text(text), ""
|
166 |
-
|
167 |
-
elif file_extension == "docx":
|
168 |
-
doc = docx.Document(file_path)
|
169 |
-
return clean_text("\n".join(p.text for p in doc.paragraphs)), ""
|
170 |
-
|
171 |
-
elif file_extension == "pptx":
|
172 |
-
prs = pptx.Presentation(file_path)
|
173 |
-
text = [shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text")]
|
174 |
-
return clean_text("\n".join(text)), ""
|
175 |
-
|
176 |
-
elif file_extension == "xlsx":
|
177 |
-
wb = openpyxl.load_workbook(file_path, read_only=True)
|
178 |
-
text = [" ".join(str(cell) for cell in row if cell) for sheet in wb.sheetnames for row in wb[sheet].iter_rows(values_only=True)]
|
179 |
-
return clean_text("\n".join(text)), ""
|
180 |
-
|
181 |
-
return "", "Unsupported file format"
|
182 |
-
except Exception as e:
|
183 |
-
return "", f"Error reading {file_extension.upper()} file: {str(e)}"
|
184 |
-
|
185 |
-
def chunk_text(text: str, max_tokens: int = 950):
|
186 |
-
try:
|
187 |
-
sentences = sent_tokenize(text)
|
188 |
-
except:
|
189 |
-
words = text.split()
|
190 |
-
sentences = [' '.join(words[i:i+20]) for i in range(0, len(words), 20)]
|
191 |
-
|
192 |
-
chunks = []
|
193 |
-
current_chunk = ""
|
194 |
-
for sentence in sentences:
|
195 |
-
token_length = len(tokenizer.encode(current_chunk + " " + sentence))
|
196 |
-
if token_length <= max_tokens:
|
197 |
-
current_chunk += " " + sentence
|
198 |
-
else:
|
199 |
-
chunks.append(current_chunk.strip())
|
200 |
-
current_chunk = sentence
|
201 |
-
|
202 |
-
if current_chunk:
|
203 |
-
chunks.append(current_chunk.strip())
|
204 |
-
|
205 |
-
return chunks
|
206 |
-
|
207 |
-
def generate_summary(text: str, length: str = "medium") -> str:
|
208 |
-
cache_key = hashlib.md5((text + length).encode()).hexdigest()
|
209 |
-
|
210 |
-
length_params = {
|
211 |
-
"short": {"max_length": 80, "min_length": 30},
|
212 |
-
"medium": {"max_length": 200, "min_length": 80},
|
213 |
-
"long": {"max_length": 300, "min_length": 210}
|
214 |
-
}
|
215 |
-
|
216 |
-
chunks = chunk_text(text)
|
217 |
-
try:
|
218 |
-
summaries = summarizer(
|
219 |
-
chunks,
|
220 |
-
max_length=length_params[length]["max_length"],
|
221 |
-
min_length=length_params[length]["min_length"],
|
222 |
-
do_sample=False,
|
223 |
-
truncation=True
|
224 |
-
)
|
225 |
-
summary_texts = [s['summary_text'] for s in summaries]
|
226 |
-
except Exception as e:
|
227 |
-
summary_texts = [f"[Error: {str(e)}"]
|
228 |
-
|
229 |
-
final_summary = " ".join(summary_texts)
|
230 |
-
final_summary = ". ".join(s.strip().capitalize() for s in final_summary.split(". ") if s.strip())
|
231 |
-
return final_summary if len(final_summary) > 25 else "Summary too short"
|
232 |
-
|
233 |
-
def text_to_speech(text: str):
|
234 |
-
try:
|
235 |
-
tts = gTTS(text)
|
236 |
-
temp_audio = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
|
237 |
-
tts.save(temp_audio.name)
|
238 |
-
return temp_audio.name
|
239 |
-
except Exception as e:
|
240 |
-
print(f"Error in text-to-speech: {e}")
|
241 |
-
return ""
|
242 |
-
|
243 |
-
def create_pdf(summary: str, original_filename: str):
|
244 |
-
try:
|
245 |
-
pdf = FPDF()
|
246 |
-
pdf.add_page()
|
247 |
-
pdf.set_font("Arial", 'B', 16)
|
248 |
-
pdf.cell(200, 10, txt="Document Summary", ln=1, align='C')
|
249 |
-
pdf.set_font("Arial", size=12)
|
250 |
-
pdf.cell(200, 10, txt=f"Original file: {original_filename}", ln=1)
|
251 |
-
pdf.cell(200, 10, txt=f"Generated on: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=1)
|
252 |
-
pdf.ln(10)
|
253 |
-
pdf.multi_cell(0, 10, txt=summary)
|
254 |
-
temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
|
255 |
-
pdf.output(temp_pdf.name)
|
256 |
-
return temp_pdf.name
|
257 |
-
except Exception as e:
|
258 |
-
print(f"Error creating PDF: {e}")
|
259 |
-
return ""
|
260 |
-
|
261 |
-
def generate_caption(image_path: str) -> str:
|
262 |
-
try:
|
263 |
-
if USE_GIT:
|
264 |
-
image = Image.open(image_path).convert("RGB")
|
265 |
-
inputs = processor(images=image, return_tensors="pt")
|
266 |
-
outputs = git_model.generate(**inputs, max_length=50)
|
267 |
-
caption = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
268 |
-
else:
|
269 |
-
result = captioner(image_path)
|
270 |
-
caption = result[0]['generated_text']
|
271 |
-
return caption
|
272 |
-
except Exception as e:
|
273 |
-
raise Exception(f"Caption generation failed: {str(e)}")
|
274 |
-
|
275 |
-
# API Endpoints
|
276 |
-
@app.post("/summarize/")
|
277 |
-
async def summarize_document(file: UploadFile = File(...), length: str = Form("medium")):
|
278 |
-
valid_types = [
|
279 |
-
'application/pdf',
|
280 |
-
'application/vnd.openxmlformats-officedocument.wordprocessingml.document',
|
281 |
-
'application/vnd.openxmlformats-officedocument.presentationml.presentation',
|
282 |
-
'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet'
|
283 |
-
]
|
284 |
-
|
285 |
-
if file.content_type not in valid_types:
|
286 |
-
raise HTTPException(
|
287 |
-
status_code=400,
|
288 |
-
detail="Please upload a valid document (PDF, DOCX, PPTX, or XLSX)"
|
289 |
-
)
|
290 |
-
|
291 |
-
try:
|
292 |
-
# Save temp file
|
293 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp:
|
294 |
-
shutil.copyfileobj(file.file, temp)
|
295 |
-
temp_path = temp.name
|
296 |
-
|
297 |
-
# Process file
|
298 |
-
text, error = extract_text(temp_path, os.path.splitext(file.filename)[1][1:].lower())
|
299 |
-
if error:
|
300 |
-
raise HTTPException(status_code=400, detail=error)
|
301 |
-
|
302 |
-
if not text or len(text.split()) < 30:
|
303 |
-
raise HTTPException(status_code=400, detail="Document too short to summarize")
|
304 |
-
|
305 |
-
summary = generate_summary(text, length)
|
306 |
-
audio_path = text_to_speech(summary)
|
307 |
-
pdf_path = create_pdf(summary, file.filename)
|
308 |
-
|
309 |
-
return {
|
310 |
-
"summary": summary,
|
311 |
-
"audio_url": f"/files/{os.path.basename(audio_path)}" if audio_path else None,
|
312 |
-
"pdf_url": f"/files/{os.path.basename(pdf_path)}" if pdf_path else None
|
313 |
-
}
|
314 |
-
|
315 |
-
except HTTPException:
|
316 |
-
raise
|
317 |
-
except Exception as e:
|
318 |
-
raise HTTPException(
|
319 |
-
status_code=500,
|
320 |
-
detail=f"Summarization failed: {str(e)}"
|
321 |
-
)
|
322 |
-
finally:
|
323 |
-
if 'temp_path' in locals() and os.path.exists(temp_path):
|
324 |
-
os.unlink(temp_path)
|
325 |
-
|
326 |
-
@app.post("/imagecaption/")
|
327 |
-
async def caption_image(file: UploadFile = File(...)):
|
328 |
-
valid_types = ['image/jpeg', 'image/png', 'image/gif', 'image/webp']
|
329 |
-
if file.content_type not in valid_types:
|
330 |
-
raise HTTPException(
|
331 |
-
status_code=400,
|
332 |
-
detail="Please upload a valid image (JPEG, PNG, GIF, or WEBP)"
|
333 |
-
)
|
334 |
-
|
335 |
-
try:
|
336 |
-
# Save temp file
|
337 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp:
|
338 |
-
shutil.copyfileobj(file.file, temp)
|
339 |
-
temp_path = temp.name
|
340 |
-
|
341 |
-
# Generate caption
|
342 |
-
caption = generate_caption(temp_path)
|
343 |
-
|
344 |
-
# Generate audio
|
345 |
-
audio_path = text_to_speech(caption)
|
346 |
-
|
347 |
-
return {
|
348 |
-
"answer": caption,
|
349 |
-
"audio": f"/files/{os.path.basename(audio_path)}" if audio_path else None
|
350 |
-
}
|
351 |
-
|
352 |
-
except HTTPException:
|
353 |
-
raise
|
354 |
-
except Exception as e:
|
355 |
-
raise HTTPException(
|
356 |
-
status_code=500,
|
357 |
-
detail=str(e)
|
358 |
-
)
|
359 |
-
finally:
|
360 |
-
if 'temp_path' in locals() and os.path.exists(temp_path):
|
361 |
-
os.unlink(temp_path)
|
362 |
-
|
363 |
-
@app.get("/files/{filename}")
|
364 |
-
async def serve_file(filename: str):
|
365 |
-
file_path = os.path.join(tempfile.gettempdir(), filename)
|
366 |
-
if os.path.exists(file_path):
|
367 |
-
return FileResponse(file_path)
|
368 |
-
raise HTTPException(status_code=404, detail="File not found")
|
369 |
-
|
370 |
-
@app.get("/", response_class=HTMLResponse)
|
371 |
-
async def serve_home(request: Request):
|
372 |
-
return templates.TemplateResponse("HomeS.html", {"request": request})
|
|
|
1 |
+
from fastapi import FastAPI, UploadFile, File, Form, Request
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
from fastapi.responses import HTMLResponse, JSONResponse, FileResponse
|
4 |
from fastapi.staticfiles import StaticFiles
|
|
|
72 |
else:
|
73 |
return JSONResponse({"error": "Invalid option"}, status_code=400)
|
74 |
except Exception as e:
|
75 |
+
return JSONResponse({"error": f"Prediction failed: {str(e)}"}, status_code=500)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|