Spaces:
Running
Running
Update appImage.py
Browse files- appImage.py +18 -5
appImage.py
CHANGED
@@ -44,12 +44,19 @@ async def caption_from_frontend(file: UploadFile = File(...)):
|
|
44 |
def home():
|
45 |
return RedirectResponse(url="/")"""
|
46 |
# appImage.py
|
47 |
-
from transformers import pipeline
|
48 |
import tempfile, os
|
49 |
from PIL import Image
|
50 |
from gtts import gTTS
|
|
|
51 |
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
async def caption_image(file):
|
55 |
contents = await file.read()
|
@@ -57,14 +64,20 @@ async def caption_image(file):
|
|
57 |
tmp.write(contents)
|
58 |
image_path = tmp.name
|
59 |
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
audio_path = text_to_speech(caption)
|
64 |
|
65 |
result = {"caption": caption}
|
66 |
if audio_path:
|
67 |
-
result["
|
68 |
return result
|
69 |
|
70 |
def text_to_speech(text: str):
|
|
|
44 |
def home():
|
45 |
return RedirectResponse(url="/")"""
|
46 |
# appImage.py
|
47 |
+
from transformers import pipeline, AutoProcessor, AutoModelForCausalLM
|
48 |
import tempfile, os
|
49 |
from PIL import Image
|
50 |
from gtts import gTTS
|
51 |
+
import torch
|
52 |
|
53 |
+
try:
|
54 |
+
processor = AutoProcessor.from_pretrained("microsoft/git-large-coco")
|
55 |
+
model = AutoModelForCausalLM.from_pretrained("microsoft/git-large-coco")
|
56 |
+
USE_GIT = True
|
57 |
+
except Exception:
|
58 |
+
captioner = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
|
59 |
+
USE_GIT = False
|
60 |
|
61 |
async def caption_image(file):
|
62 |
contents = await file.read()
|
|
|
64 |
tmp.write(contents)
|
65 |
image_path = tmp.name
|
66 |
|
67 |
+
if USE_GIT:
|
68 |
+
image = Image.open(image_path).convert('RGB')
|
69 |
+
pixel_values = processor(images=image, return_tensors="pt").pixel_values
|
70 |
+
generated_ids = model.generate(pixel_values, max_length=50)
|
71 |
+
caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
72 |
+
else:
|
73 |
+
captions = captioner(image_path)
|
74 |
+
caption = captions[0]['generated_text'] if captions else "No caption generated."
|
75 |
|
76 |
audio_path = text_to_speech(caption)
|
77 |
|
78 |
result = {"caption": caption}
|
79 |
if audio_path:
|
80 |
+
result["audio"] = f"/files/{os.path.basename(audio_path)}"
|
81 |
return result
|
82 |
|
83 |
def text_to_speech(text: str):
|