File size: 5,093 Bytes
0fa2f87
da10ca7
0fa2f87
6f78a44
 
08f3d12
7839da1
 
 
0fa2f87
7839da1
 
 
0fa2f87
7839da1
08f3d12
7839da1
 
 
0fa2f87
7839da1
 
 
 
 
 
0fa2f87
7839da1
0fa2f87
7839da1
 
 
 
 
 
0fa2f87
7839da1
0fa2f87
7839da1
08f3d12
0fa2f87
7839da1
08f3d12
0fa2f87
7839da1
08f3d12
 
0fa2f87
7839da1
0fa2f87
7839da1
0fa2f87
 
 
08f3d12
 
7839da1
08f3d12
7839da1
 
 
 
 
 
 
 
0fa2f87
7839da1
 
 
 
0fa2f87
 
 
 
 
7839da1
08f3d12
0fa2f87
 
 
 
 
 
 
 
 
 
08f3d12
0fa2f87
 
 
7839da1
 
 
0fa2f87
7839da1
 
 
 
 
08f3d12
7839da1
 
0fa2f87
7839da1
 
 
 
08f3d12
7839da1
 
 
08f3d12
7839da1
0fa2f87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# app.py
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import fitz, docx, pptx, openpyxl, re, nltk, tempfile, os, easyocr, datetime, hashlib
from nltk.tokenize import sent_tokenize
from fpdf import FPDF
from gtts import gTTS

nltk.download('punkt', quiet=True)

# Load models
MODEL_NAME = "facebook/bart-large-cnn"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
model.eval()
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer, device=-1, batch_size=4)
reader = easyocr.Reader(['en'], gpu=False)

summary_cache = {}

def clean_text(text: str) -> str:
    text = re.sub(r'\s+', ' ', text)
    text = re.sub(r'\u2022\s*|\d\.\s+', '', text)
    text = re.sub(r'\[.*?\]|\(.*?\)', '', text)
    text = re.sub(r'\bPage\s*\d+\b', '', text, flags=re.IGNORECASE)
    return text.strip()

def extract_text(file_path: str, ext: str):
    try:
        if ext == "pdf":
            with fitz.open(file_path) as doc:
                text = "\n".join(page.get_text("text") for page in doc)
                if len(text.strip()) < 50:
                    images = [page.get_pixmap() for page in doc]
                    temp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
                    images[0].save(temp_img.name)
                    text = "\n".join(reader.readtext(temp_img.name, detail=0))
                    os.unlink(temp_img.name)
        elif ext == "docx":
            doc = docx.Document(file_path)
            text = "\n".join(p.text for p in doc.paragraphs)
        elif ext == "pptx":
            prs = pptx.Presentation(file_path)
            text = "\n".join(shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text"))
        elif ext == "xlsx":
            wb = openpyxl.load_workbook(file_path, read_only=True)
            text = "\n".join([" ".join(str(cell) for cell in row if cell) for sheet in wb.sheetnames for row in wb[sheet].iter_rows(values_only=True)])
        else:
            text = ""
    except Exception as e:
        return "", f"Error extracting text: {str(e)}"

    return clean_text(text), ""

def chunk_text(text: str, max_tokens: int = 950):
    sentences = sent_tokenize(text)
    chunks, current_chunk = [], ""
    for sentence in sentences:
        if len(tokenizer.encode(current_chunk + " " + sentence)) <= max_tokens:
            current_chunk += " " + sentence
        else:
            chunks.append(current_chunk.strip())
            current_chunk = sentence
    if current_chunk:
        chunks.append(current_chunk.strip())
    return chunks

def generate_summary(text: str, length: str = "medium"):
    cache_key = hashlib.md5((text + length).encode()).hexdigest()
    if cache_key in summary_cache:
        return summary_cache[cache_key]

    length_params = {
        "short": {"max_length": 80, "min_length": 30},
        "medium": {"max_length": 200, "min_length": 80},
        "long": {"max_length": 300, "min_length": 210}
    }

    chunks = chunk_text(text)
    summaries = summarizer(
        chunks,
        max_length=length_params[length]["max_length"],
        min_length=length_params[length]["min_length"],
        do_sample=False,
        truncation=True,
        no_repeat_ngram_size=2,
        num_beams=2,
        early_stopping=True
    )
    final_summary = " ".join(s['summary_text'] for s in summaries)
    final_summary = ". ".join(s.strip().capitalize() for s in final_summary.split(". ") if s.strip())
    final_summary = final_summary if len(final_summary) > 25 else "Summary too short."

    summary_cache[cache_key] = final_summary
    return final_summary

def text_to_speech(text: str):
    try:
        tts = gTTS(text)
        temp_audio = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
        tts.save(temp_audio.name)
        return temp_audio.name
    except:
        return ""

def create_pdf(summary: str, filename: str):
    try:
        pdf = FPDF()
        pdf.add_page()
        pdf.set_font("Arial", size=12)
        pdf.multi_cell(0, 10, summary)
        temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
        pdf.output(temp_pdf.name)
        return temp_pdf.name
    except:
        return ""

async def summarize_document(file, length="medium"):
    contents = await file.read()
    with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
        tmp_file.write(contents)
        tmp_path = tmp_file.name

    ext = file.filename.split('.')[-1].lower()
    text, error = extract_text(tmp_path, ext)

    if error:
        raise Exception(error)

    if not text or len(text.split()) < 30:
        raise Exception("Document too short to summarize.")

    summary = generate_summary(text, length)
    audio_path = text_to_speech(summary)
    pdf_path = create_pdf(summary, file.filename)

    result = {"summary": summary}
    if audio_path:
        result["audioUrl"] = f"/files/{os.path.basename(audio_path)}"
    if pdf_path:
        result["pdfUrl"] = f"/files/{os.path.basename(pdf_path)}"
    return result