Spaces:
Running
Running
File size: 5,093 Bytes
0fa2f87 da10ca7 0fa2f87 6f78a44 08f3d12 7839da1 0fa2f87 7839da1 0fa2f87 7839da1 08f3d12 7839da1 0fa2f87 7839da1 0fa2f87 7839da1 0fa2f87 7839da1 0fa2f87 7839da1 0fa2f87 7839da1 08f3d12 0fa2f87 7839da1 08f3d12 0fa2f87 7839da1 08f3d12 0fa2f87 7839da1 0fa2f87 7839da1 0fa2f87 08f3d12 7839da1 08f3d12 7839da1 0fa2f87 7839da1 0fa2f87 7839da1 08f3d12 0fa2f87 08f3d12 0fa2f87 7839da1 0fa2f87 7839da1 08f3d12 7839da1 0fa2f87 7839da1 08f3d12 7839da1 08f3d12 7839da1 0fa2f87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
# app.py
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import fitz, docx, pptx, openpyxl, re, nltk, tempfile, os, easyocr, datetime, hashlib
from nltk.tokenize import sent_tokenize
from fpdf import FPDF
from gtts import gTTS
nltk.download('punkt', quiet=True)
# Load models
MODEL_NAME = "facebook/bart-large-cnn"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
model.eval()
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer, device=-1, batch_size=4)
reader = easyocr.Reader(['en'], gpu=False)
summary_cache = {}
def clean_text(text: str) -> str:
text = re.sub(r'\s+', ' ', text)
text = re.sub(r'\u2022\s*|\d\.\s+', '', text)
text = re.sub(r'\[.*?\]|\(.*?\)', '', text)
text = re.sub(r'\bPage\s*\d+\b', '', text, flags=re.IGNORECASE)
return text.strip()
def extract_text(file_path: str, ext: str):
try:
if ext == "pdf":
with fitz.open(file_path) as doc:
text = "\n".join(page.get_text("text") for page in doc)
if len(text.strip()) < 50:
images = [page.get_pixmap() for page in doc]
temp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
images[0].save(temp_img.name)
text = "\n".join(reader.readtext(temp_img.name, detail=0))
os.unlink(temp_img.name)
elif ext == "docx":
doc = docx.Document(file_path)
text = "\n".join(p.text for p in doc.paragraphs)
elif ext == "pptx":
prs = pptx.Presentation(file_path)
text = "\n".join(shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text"))
elif ext == "xlsx":
wb = openpyxl.load_workbook(file_path, read_only=True)
text = "\n".join([" ".join(str(cell) for cell in row if cell) for sheet in wb.sheetnames for row in wb[sheet].iter_rows(values_only=True)])
else:
text = ""
except Exception as e:
return "", f"Error extracting text: {str(e)}"
return clean_text(text), ""
def chunk_text(text: str, max_tokens: int = 950):
sentences = sent_tokenize(text)
chunks, current_chunk = [], ""
for sentence in sentences:
if len(tokenizer.encode(current_chunk + " " + sentence)) <= max_tokens:
current_chunk += " " + sentence
else:
chunks.append(current_chunk.strip())
current_chunk = sentence
if current_chunk:
chunks.append(current_chunk.strip())
return chunks
def generate_summary(text: str, length: str = "medium"):
cache_key = hashlib.md5((text + length).encode()).hexdigest()
if cache_key in summary_cache:
return summary_cache[cache_key]
length_params = {
"short": {"max_length": 80, "min_length": 30},
"medium": {"max_length": 200, "min_length": 80},
"long": {"max_length": 300, "min_length": 210}
}
chunks = chunk_text(text)
summaries = summarizer(
chunks,
max_length=length_params[length]["max_length"],
min_length=length_params[length]["min_length"],
do_sample=False,
truncation=True,
no_repeat_ngram_size=2,
num_beams=2,
early_stopping=True
)
final_summary = " ".join(s['summary_text'] for s in summaries)
final_summary = ". ".join(s.strip().capitalize() for s in final_summary.split(". ") if s.strip())
final_summary = final_summary if len(final_summary) > 25 else "Summary too short."
summary_cache[cache_key] = final_summary
return final_summary
def text_to_speech(text: str):
try:
tts = gTTS(text)
temp_audio = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
tts.save(temp_audio.name)
return temp_audio.name
except:
return ""
def create_pdf(summary: str, filename: str):
try:
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
pdf.multi_cell(0, 10, summary)
temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
pdf.output(temp_pdf.name)
return temp_pdf.name
except:
return ""
async def summarize_document(file, length="medium"):
contents = await file.read()
with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
tmp_file.write(contents)
tmp_path = tmp_file.name
ext = file.filename.split('.')[-1].lower()
text, error = extract_text(tmp_path, ext)
if error:
raise Exception(error)
if not text or len(text.split()) < 30:
raise Exception("Document too short to summarize.")
summary = generate_summary(text, length)
audio_path = text_to_speech(summary)
pdf_path = create_pdf(summary, file.filename)
result = {"summary": summary}
if audio_path:
result["audioUrl"] = f"/files/{os.path.basename(audio_path)}"
if pdf_path:
result["pdfUrl"] = f"/files/{os.path.basename(pdf_path)}"
return result
|