Spaces:
Running
Running
File size: 8,568 Bytes
130c582 551e732 130c582 551e732 130c582 551e732 130c582 fe437cb 9b32604 315a442 231ece3 d9c0a34 130c582 f895e21 130c582 551e732 d9c0a34 1f58079 130c582 d9c0a34 231ece3 d9c0a34 130c582 c98b8c8 1f58079 c98b8c8 130c582 bef3ff2 130c582 551e732 9b32604 bef3ff2 9b32604 c98b8c8 551e732 c98b8c8 551e732 c98b8c8 551e732 c98b8c8 551e732 c98b8c8 551e732 c98b8c8 9b32604 bef3ff2 9b32604 c98b8c8 551e732 130c582 551e732 1f58079 551e732 c98b8c8 551e732 231ece3 551e732 c98b8c8 551e732 c98b8c8 551e732 130c582 551e732 d9c0a34 130c582 b6260fc a0e7ad2 130c582 551e732 1f58079 551e732 d9c0a34 551e732 c98b8c8 9b32604 c98b8c8 315a442 bef3ff2 315a442 c98b8c8 551e732 c98b8c8 551e732 315a442 bef3ff2 551e732 c98b8c8 551e732 c98b8c8 551e732 f895e21 9b32604 fe437cb c98b8c8 130c582 c98b8c8 130c582 551e732 bef3ff2 c98b8c8 130c582 9b32604 130c582 551e732 c98b8c8 130c582 551e732 c98b8c8 315a442 c98b8c8 fe437cb c98b8c8 fe437cb c98b8c8 551e732 c98b8c8 551e732 130c582 315a442 9b32604 315a442 9b32604 145f8e8 130c582 551e732 bef3ff2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import gradio as gr
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import fitz # PyMuPDF
import docx
import pptx
import openpyxl
import re
import nltk
from nltk.tokenize import sent_tokenize
import torch
from fastapi import FastAPI
from fastapi.responses import RedirectResponse, FileResponse, JSONResponse
from gtts import gTTS
import tempfile
import os
import easyocr
from fpdf import FPDF
import datetime
from concurrent.futures import ThreadPoolExecutor
import hashlib
nltk.download('punkt', quiet=True)
app = FastAPI()
MODEL_NAME = "facebook/bart-large-cnn"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
model.eval()
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer, device=-1, batch_size=4)
reader = easyocr.Reader(['en'], gpu=torch.cuda.is_available())
executor = ThreadPoolExecutor()
summary_cache = {}
def clean_text(text: str) -> str:
text = re.sub(r'\s+', ' ', text)
text = re.sub(r'\u2022\s*|\d\.\s+', '', text)
text = re.sub(r'\[.*?\]|\(.*?\)', '', text)
text = re.sub(r'\bPage\s*\d+\b', '', text, flags=re.IGNORECASE)
return text.strip()
def extract_text(file_path: str, file_extension: str):
try:
if file_extension == "pdf":
with fitz.open(file_path) as doc:
text = "\n".join(page.get_text("text") for page in doc)
if len(text.strip()) < 50:
images = [page.get_pixmap() for page in doc]
temp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
images[0].save(temp_img.name)
ocr_result = reader.readtext(temp_img.name, detail=0)
os.unlink(temp_img.name)
text = "\n".join(ocr_result) if ocr_result else text
return clean_text(text), ""
elif file_extension == "docx":
doc = docx.Document(file_path)
return clean_text("\n".join(p.text for p in doc.paragraphs)), ""
elif file_extension == "pptx":
prs = pptx.Presentation(file_path)
text = [shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text")]
return clean_text("\n".join(text)), ""
elif file_extension == "xlsx":
wb = openpyxl.load_workbook(file_path, read_only=True)
text = [" ".join(str(cell) for cell in row if cell) for sheet in wb.sheetnames for row in wb[sheet].iter_rows(values_only=True)]
return clean_text("\n".join(text)), ""
elif file_extension in ["jpg", "jpeg", "png"]:
ocr_result = reader.readtext(file_path, detail=0)
return clean_text("\n".join(ocr_result)), ""
return "", "Unsupported file format"
except Exception as e:
return "", f"Error reading {file_extension.upper()} file: {str(e)}"
def chunk_text(text: str, max_tokens: int = 950):
try:
sentences = sent_tokenize(text)
except:
words = text.split()
sentences = [' '.join(words[i:i+20]) for i in range(0, len(words), 20)]
chunks = []
current_chunk = ""
for sentence in sentences:
token_length = len(tokenizer.encode(current_chunk + " " + sentence))
if token_length <= max_tokens:
current_chunk += " " + sentence
else:
chunks.append(current_chunk.strip())
current_chunk = sentence
if current_chunk:
chunks.append(current_chunk.strip())
return chunks
def generate_summary(text: str, length: str = "medium") -> str:
cache_key = hashlib.md5((text + length).encode()).hexdigest()
if cache_key in summary_cache:
return summary_cache[cache_key]
length_params = {
"short": {"max_length": 80, "min_length": 30},
"medium": {"max_length": 200, "min_length": 80},
"long": {"max_length": 300, "min_length": 210}
}
chunks = chunk_text(text)
try:
summaries = summarizer(
chunks,
max_length=length_params[length]["max_length"],
min_length=length_params[length]["min_length"],
do_sample=False,
truncation=True,
no_repeat_ngram_size=2,
num_beams=2,
early_stopping=True
)
summary_texts = [s['summary_text'] for s in summaries]
except Exception as e:
summary_texts = [f"[Batch error: {str(e)}]"]
final_summary = " ".join(summary_texts)
final_summary = ". ".join(s.strip().capitalize() for s in final_summary.split(". ") if s.strip())
final_summary = final_summary if len(final_summary) > 25 else "Summary too short - document may be too brief"
summary_cache[cache_key] = final_summary
return final_summary
def text_to_speech(text: str):
try:
tts = gTTS(text)
temp_audio = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
tts.save(temp_audio.name)
return temp_audio.name
except Exception as e:
print(f"Error in text-to-speech: {e}")
return ""
def create_pdf(summary: str, original_filename: str):
try:
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
pdf.set_font("Arial", 'B', 16)
pdf.cell(200, 10, txt="Document Summary", ln=1, align='C')
pdf.set_font("Arial", size=12)
pdf.cell(200, 10, txt=f"Original file: {original_filename}", ln=1)
pdf.cell(200, 10, txt=f"Generated on: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=1)
pdf.ln(10)
pdf.multi_cell(0, 10, txt=summary)
temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
pdf.output(temp_pdf.name)
return temp_pdf.name
except Exception as e:
print(f"Error creating PDF: {e}")
return ""
def summarize_document(file, summary_length: str, enable_tts: bool = True):
if file is None:
return "Please upload a document first", "", None, None
file_path = file.name
file_extension = file_path.split(".")[-1].lower()
original_filename = os.path.basename(file_path)
text, error = extract_text(file_path, file_extension)
if error:
return error, "", None, None
if not text or len(text.split()) < 30:
return "Document is too short or contains too little text to summarize", "", None, None
try:
summary = generate_summary(text, summary_length)
audio_path = text_to_speech(summary) if enable_tts else None
pdf_path = create_pdf(summary, original_filename) if summary else None
return summary, "", audio_path, pdf_path
except Exception as e:
return f"Summarization error: {str(e)}", "", None, None
with gr.Blocks(title="Document Summarizer", theme=gr.themes.Soft()) as demo:
gr.Markdown("# π Advanced Document Summarizer")
gr.Markdown("Upload a document to generate a summary with audio and optional PDF download")
with gr.Row():
with gr.Column():
file_input = gr.File(
label="Upload Document",
file_types=[".pdf", ".docx", ".pptx", ".xlsx", ".jpg", ".jpeg", ".png"],
type="filepath"
)
length_radio = gr.Radio(
["short", "medium", "long"],
value="medium",
label="Summary Length"
)
submit_btn = gr.Button("Generate Summary", variant="primary")
with gr.Column():
output = gr.Textbox(label="Summary", lines=10)
audio_output = gr.Audio(label="Audio Summary")
pdf_download = gr.File(label="Download Summary as PDF", visible=False)
def summarize_and_return_ui(file, summary_length):
summary, _, audio_path, pdf_path = summarize_document(file, summary_length)
return (
summary,
audio_path,
gr.File(visible=pdf_path is not None, value=pdf_path)
)
submit_btn.click(
fn=summarize_and_return_ui,
inputs=[file_input, length_radio],
outputs=[output, audio_output, pdf_download]
)
@app.get("/files/{file_name}")
async def get_file(file_name: str):
file_path = os.path.join(tempfile.gettempdir(), file_name)
if os.path.exists(file_path):
return FileResponse(file_path)
return JSONResponse({"error": "File not found"}, status_code=404)
app = gr.mount_gradio_app(app, demo, path="/")
@app.get("/")
def redirect_to_interface():
return RedirectResponse(url="/") |