File size: 7,860 Bytes
7839da1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d83986
 
7839da1
 
 
 
 
 
 
 
 
 
 
 
 
 
6be72e5
7839da1
 
 
 
 
 
 
 
 
 
 
 
 
 
6be72e5
 
7839da1
 
6be72e5
7839da1
 
 
6be72e5
7839da1
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
import os
import tempfile
from gtts import gTTS
from fpdf import FPDF
import datetime
import fitz  # PyMuPDF
import docx
import pptx
import openpyxl
import re
import nltk
from nltk.tokenize import sent_tokenize
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import torch
import easyocr
import shutil
import hashlib

nltk.download('punkt', quiet=True)

app = FastAPI()

# CORS Configuration
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Initialize models
MODEL_NAME = "facebook/bart-large-cnn"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
model.eval()
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer, device=-1, batch_size=4)

reader = easyocr.Reader(['en'], gpu=torch.cuda.is_available())
summary_cache = {}

def clean_text(text: str) -> str:
    text = re.sub(r'\s+', ' ', text)
    text = re.sub(r'\u2022\s*|\d\.\s+', '', text)
    text = re.sub(r'\[.*?\]|\(.*?\)', '', text)
    text = re.sub(r'\bPage\s*\d+\b', '', text, flags=re.IGNORECASE)
    return text.strip()

def extract_text(file_path: str, file_extension: str):
    try:
        if file_extension == "pdf":
            with fitz.open(file_path) as doc:
                text = "\n".join(page.get_text("text") for page in doc)
                if len(text.strip()) < 50:
                    images = [page.get_pixmap() for page in doc]
                    temp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
                    images[0].save(temp_img.name)
                    ocr_result = reader.readtext(temp_img.name, detail=0)
                    os.unlink(temp_img.name)
                    text = "\n".join(ocr_result) if ocr_result else text
                return clean_text(text), ""

        elif file_extension == "docx":
            doc = docx.Document(file_path)
            return clean_text("\n".join(p.text for p in doc.paragraphs), ""

        elif file_extension == "pptx":
            prs = pptx.Presentation(file_path)
            text = [shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text")]
            return clean_text("\n".join(text)), ""

        elif file_extension == "xlsx":
            wb = openpyxl.load_workbook(file_path, read_only=True)
            text = [" ".join(str(cell) for cell in row if cell) for sheet in wb.sheetnames for row in wb[sheet].iter_rows(values_only=True)]
            return clean_text("\n".join(text)), ""

        return "", "Unsupported file format"
    except Exception as e:
        return "", f"Error reading {file_extension.upper()} file: {str(e)}"

def chunk_text(text: str, max_tokens: int = 950):
    try:
        sentences = sent_tokenize(text)
    except:
        words = text.split()
        sentences = [' '.join(words[i:i+20]) for i in range(0, len(words), 20]

    chunks = []
    current_chunk = ""
    for sentence in sentences:
        token_length = len(tokenizer.encode(current_chunk + " " + sentence))
        if token_length <= max_tokens:
            current_chunk += " " + sentence
        else:
            chunks.append(current_chunk.strip())
            current_chunk = sentence

    if current_chunk:
        chunks.append(current_chunk.strip())

    return chunks

def generate_summary(text: str, length: str = "medium") -> str:
    cache_key = hashlib.md5((text + length).encode()).hexdigest()
    if cache_key in summary_cache:
        return summary_cache[cache_key]

    length_params = {
        "short": {"max_length": 80, "min_length": 30},
        "medium": {"max_length": 200, "min_length": 80},
        "long": {"max_length": 300, "min_length": 210}
    }
    chunks = chunk_text(text)
    try:
        summaries = summarizer(
            chunks,
            max_length=length_params[length]["max_length"],
            min_length=length_params[length]["min_length"],
            do_sample=False,
            truncation=True,
            no_repeat_ngram_size=2,
            num_beams=2,
            early_stopping=True
        )
        summary_texts = [s['summary_text'] for s in summaries]
    except Exception as e:
        summary_texts = [f"[Batch error: {str(e)}]"]

    final_summary = " ".join(summary_texts)
    final_summary = ". ".join(s.strip().capitalize() for s in final_summary.split(". ") if s.strip())
    final_summary = final_summary if len(final_summary) > 25 else "Summary too short - document may be too brief"

    summary_cache[cache_key] = final_summary
    return final_summary

def text_to_speech(text: str):
    try:
        tts = gTTS(text)
        temp_audio = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
        tts.save(temp_audio.name)
        return temp_audio.name
    except Exception as e:
        print(f"Error in text-to-speech: {e}")
        return ""

def create_pdf(summary: str, original_filename: str):
    try:
        pdf = FPDF()
        pdf.add_page()
        pdf.set_font("Arial", size=12)
        pdf.set_font("Arial", 'B', 16)
        pdf.cell(200, 10, txt="Document Summary", ln=1, align='C')
        pdf.set_font("Arial", size=12)
        pdf.cell(200, 10, txt=f"Original file: {original_filename}", ln=1)
        pdf.cell(200, 10, txt=f"Generated on: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=1)
        pdf.ln(10)
        pdf.multi_cell(0, 10, txt=summary)
        temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
        pdf.output(temp_pdf.name)
        return temp_pdf.name
    except Exception as e:
        print(f"Error creating PDF: {e}")
        return ""

@app.post("/summarize/")
async def summarize_api(file: UploadFile = File(...), length: str = Form("medium")):
    # Validate file type
    valid_types = [
        'application/pdf',
        'application/vnd.openxmlformats-officedocument.wordprocessingml.document',
        'application/vnd.openxmlformats-officedocument.presentationml.presentation',
        'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet'
    ]
    
    if file.content_type not in valid_types:
        raise HTTPException(
            status_code=400,
            detail="Please upload a valid document (PDF, DOCX, PPTX, or XLSX)"
        )

    try:
        # Save temp file
        with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp:
            shutil.copyfileobj(file.file, temp)
            temp_path = temp.name

        # Process file
        text, error = extract_text(temp_path, os.path.splitext(file.filename)[1][1:].lower())
        if error:
            raise HTTPException(status_code=400, detail=error)

        summary = generate_summary(text, length)
        audio_path = text_to_speech(summary)
        pdf_path = create_pdf(summary, file.filename)

        return {
            "summary": summary,
            "audio_url": f"/files/{os.path.basename(audio_path)}" if audio_path else None,
            "pdf_url": f"/files/{os.path.basename(pdf_path)}" if pdf_path else None
        }

    except HTTPException:
        raise
    except Exception as e:
        raise HTTPException(
            status_code=500,
            detail=f"Summarization failed: {str(e)}"
        )
    finally:
        if 'temp_path' in locals() and os.path.exists(temp_path):
            os.unlink(temp_path)

@app.get("/files/{filename}")
async def get_file(filename: str):
    file_path = os.path.join(tempfile.gettempdir(), filename)
    if os.path.exists(file_path):
        return FileResponse(file_path)
    raise HTTPException(status_code=404, detail="File not found")