Spaces:
Running
Running
File size: 11,937 Bytes
0fa2f87 b0f9e39 0fa2f87 6f78a44 08f3d12 7839da1 0fa2f87 7839da1 0fa2f87 7839da1 08f3d12 7839da1 0fa2f87 7839da1 0fa2f87 7839da1 0fa2f87 7839da1 0fa2f87 7839da1 0fa2f87 7839da1 08f3d12 0fa2f87 7839da1 08f3d12 0fa2f87 7839da1 08f3d12 0fa2f87 7839da1 0fa2f87 7839da1 0fa2f87 08f3d12 7839da1 08f3d12 7839da1 0fa2f87 7839da1 0fa2f87 7839da1 08f3d12 0fa2f87 08f3d12 0fa2f87 7839da1 0fa2f87 7839da1 08f3d12 7839da1 0fa2f87 7839da1 08f3d12 7839da1 08f3d12 7839da1 0fa2f87 b0f9e39 990a952 b0f9e39 990a952 b0f9e39 990a952 b0f9e39 5487c8e b0f9e39 990a952 b0f9e39 990a952 b0f9e39 990a952 b0f9e39 990a952 b0f9e39 990a952 b0f9e39 990a952 b0f9e39 990a952 b0f9e39 990a952 b0f9e39 990a952 b0f9e39 587a2e1 b0f9e39 990a952 b0f9e39 5487c8e b0f9e39 5487c8e b0f9e39 990a952 b0f9e39 990a952 b0f9e39 990a952 b0f9e39 990a952 b0f9e39 990a952 b0f9e39 990a952 b0f9e39 990a952 b0f9e39 990a952 b0f9e39 990a952 b0f9e39 990a952 b0f9e39 990a952 b0f9e39 990a952 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
# app.py
"""from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import fitz, docx, pptx, openpyxl, re, nltk, tempfile, os, easyocr, datetime, hashlib
from nltk.tokenize import sent_tokenize
from fpdf import FPDF
from gtts import gTTS
nltk.download('punkt', quiet=True)
# Load models
MODEL_NAME = "facebook/bart-large-cnn"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
model.eval()
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer, device=-1, batch_size=4)
reader = easyocr.Reader(['en'], gpu=False)
summary_cache = {}
def clean_text(text: str) -> str:
text = re.sub(r'\s+', ' ', text)
text = re.sub(r'\u2022\s*|\d\.\s+', '', text)
text = re.sub(r'\[.*?\]|\(.*?\)', '', text)
text = re.sub(r'\bPage\s*\d+\b', '', text, flags=re.IGNORECASE)
return text.strip()
def extract_text(file_path: str, ext: str):
try:
if ext == "pdf":
with fitz.open(file_path) as doc:
text = "\n".join(page.get_text("text") for page in doc)
if len(text.strip()) < 50:
images = [page.get_pixmap() for page in doc]
temp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
images[0].save(temp_img.name)
text = "\n".join(reader.readtext(temp_img.name, detail=0))
os.unlink(temp_img.name)
elif ext == "docx":
doc = docx.Document(file_path)
text = "\n".join(p.text for p in doc.paragraphs)
elif ext == "pptx":
prs = pptx.Presentation(file_path)
text = "\n".join(shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text"))
elif ext == "xlsx":
wb = openpyxl.load_workbook(file_path, read_only=True)
text = "\n".join([" ".join(str(cell) for cell in row if cell) for sheet in wb.sheetnames for row in wb[sheet].iter_rows(values_only=True)])
else:
text = ""
except Exception as e:
return "", f"Error extracting text: {str(e)}"
return clean_text(text), ""
def chunk_text(text: str, max_tokens: int = 950):
sentences = sent_tokenize(text)
chunks, current_chunk = [], ""
for sentence in sentences:
if len(tokenizer.encode(current_chunk + " " + sentence)) <= max_tokens:
current_chunk += " " + sentence
else:
chunks.append(current_chunk.strip())
current_chunk = sentence
if current_chunk:
chunks.append(current_chunk.strip())
return chunks
def generate_summary(text: str, length: str = "medium"):
cache_key = hashlib.md5((text + length).encode()).hexdigest()
if cache_key in summary_cache:
return summary_cache[cache_key]
length_params = {
"short": {"max_length": 80, "min_length": 30},
"medium": {"max_length": 200, "min_length": 80},
"long": {"max_length": 300, "min_length": 210}
}
chunks = chunk_text(text)
summaries = summarizer(
chunks,
max_length=length_params[length]["max_length"],
min_length=length_params[length]["min_length"],
do_sample=False,
truncation=True,
no_repeat_ngram_size=2,
num_beams=2,
early_stopping=True
)
final_summary = " ".join(s['summary_text'] for s in summaries)
final_summary = ". ".join(s.strip().capitalize() for s in final_summary.split(". ") if s.strip())
final_summary = final_summary if len(final_summary) > 25 else "Summary too short."
summary_cache[cache_key] = final_summary
return final_summary
def text_to_speech(text: str):
try:
tts = gTTS(text)
temp_audio = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
tts.save(temp_audio.name)
return temp_audio.name
except:
return ""
def create_pdf(summary: str, filename: str):
try:
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
pdf.multi_cell(0, 10, summary)
temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
pdf.output(temp_pdf.name)
return temp_pdf.name
except:
return ""
async def summarize_document(file, length="medium"):
contents = await file.read()
with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
tmp_file.write(contents)
tmp_path = tmp_file.name
ext = file.filename.split('.')[-1].lower()
text, error = extract_text(tmp_path, ext)
if error:
raise Exception(error)
if not text or len(text.split()) < 30:
raise Exception("Document too short to summarize.")
summary = generate_summary(text, length)
audio_path = text_to_speech(summary)
pdf_path = create_pdf(summary, file.filename)
result = {"summary": summary}
if audio_path:
result["audioUrl"] = f"/files/{os.path.basename(audio_path)}"
if pdf_path:
result["pdfUrl"] = f"/files/{os.path.basename(pdf_path)}"
return result"""
# app.py
from fastapi import UploadFile, File
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import fitz # PyMuPDF
import docx
import pptx
import openpyxl
import re
import nltk
import torch
from nltk.tokenize import sent_tokenize
from gtts import gTTS
from fpdf import FPDF
import tempfile
import os
import easyocr
import datetime
import hashlib
# Setup
nltk.download('punkt', quiet=True)
# Load Models
MODEL_NAME = "facebook/bart-large-cnn"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
model.eval()
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer, device=-1, batch_size=4)
reader = easyocr.Reader(['en','fr'], gpu=torch.cuda.is_available())
summary_cache = {}
# Allowed file extensions
ALLOWED_EXTENSIONS = {'pdf', 'docx', 'pptx', 'xlsx'}
# --- Helper Functions ---
def clean_text(text: str) -> str:
text = re.sub(r'\s+', ' ', text)
text = re.sub(r'\u2022\s*|\d\.\s+', '', text)
text = re.sub(r'\[.*?\]|\(.*?\)', '', text)
text = re.sub(r'\bPage\s*\d+\b', '', text, flags=re.IGNORECASE)
return text.strip()
def extract_text(file_path: str, extension: str):
try:
if extension == "pdf":
with fitz.open(file_path) as doc:
text = "\n".join(page.get_text("text") for page in doc)
if len(text.strip()) < 50:
images = [page.get_pixmap() for page in doc]
temp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
images[0].save(temp_img.name)
ocr_result = reader.readtext(temp_img.name, detail=0)
os.unlink(temp_img.name)
text = "\n".join(ocr_result) if ocr_result else text
elif extension == "docx":
doc = docx.Document(file_path)
text = "\n".join(p.text for p in doc.paragraphs)
elif extension == "pptx":
prs = pptx.Presentation(file_path)
text = "\n".join(shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text"))
elif extension == "xlsx":
wb = openpyxl.load_workbook(file_path, read_only=True)
text = "\n".join(
[" ".join(str(cell) for cell in row if cell) for sheet in wb.sheetnames for row in wb[sheet].iter_rows(values_only=True)]
)
else:
return "", "Unsupported file format."
return clean_text(text), ""
except Exception as e:
return "", f"Error reading {extension.upper()} file: {str(e)}"
def chunk_text(text: str, max_tokens: int = 950):
try:
sentences = sent_tokenize(text)
except:
words = text.split()
sentences = [' '.join(words[i:i+20]) for i in range(0, len(words), 20)]
chunks = []
current_chunk = ""
for sentence in sentences:
token_length = len(tokenizer.encode(current_chunk + " " + sentence))
if token_length <= max_tokens:
current_chunk += " " + sentence
else:
if current_chunk.strip():
chunks.append(current_chunk.strip())
current_chunk = sentence
if current_chunk.strip():
chunks.append(current_chunk.strip())
return chunks
def generate_summary(text: str, length: str = "medium"):
cache_key = hashlib.md5((text + length).encode()).hexdigest()
if cache_key in summary_cache:
return summary_cache[cache_key]
length_params = {
"short": {"max_length": 50, "min_length": 30},
"medium": {"max_length": 200, "min_length": 80},
"long": {"max_length": 300, "min_length": 210}
}
chunks = chunk_text(text)
summaries = summarizer(
chunks,
max_length=length_params[length]["max_length"],
min_length=length_params[length]["min_length"],
do_sample=False,
truncation=True,
no_repeat_ngram_size=2,
num_beams=2,
early_stopping=True
)
summary_texts = [s['summary_text'] for s in summaries]
final_summary = " ".join(summary_texts)
final_summary = ". ".join(s.strip().capitalize() for s in final_summary.split(". ") if s.strip())
final_summary = final_summary if len(final_summary) > 25 else "Summary too short - document may be too brief"
summary_cache[cache_key] = final_summary
return final_summary
def text_to_speech(text: str):
try:
tts = gTTS(text)
temp_audio = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
tts.save(temp_audio.name)
return temp_audio.name
except Exception:
return ""
def create_pdf(summary: str, filename: str):
try:
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", 'B', 16)
pdf.cell(200, 10, txt=f"Summary of {filename}", ln=1, align='C')
pdf.set_font("Arial", size=12)
pdf.cell(200, 10, txt=f"Generated on: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=1)
pdf.ln(10)
pdf.set_font("Arial", size=10)
pdf.multi_cell(0, 10, txt=summary)
temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
pdf.output(temp_pdf.name)
return temp_pdf.name
except Exception:
return ""
# --- Public API Function ---
async def summarize_document(file: UploadFile, length: str = "medium"):
try:
filename = file.filename
extension = os.path.splitext(filename)[-1].lower().replace('.', '')
if extension not in ALLOWED_EXTENSIONS:
raise Exception(f"Unsupported file type: {extension.upper()}. Only PDF, DOCX, PPTX, XLSX are allowed.")
# Save uploaded file
with tempfile.NamedTemporaryFile(delete=False, suffix=f".{extension}") as tmp_file:
tmp_file.write(await file.read())
tmp_path = tmp_file.name
# Extract text
text, error = extract_text(tmp_path, extension)
if error:
os.unlink(tmp_path)
raise Exception(error)
if not text or len(text.split()) < 30:
os.unlink(tmp_path)
raise Exception("Document too short to summarize.")
# Summarize
summary = generate_summary(text, length)
# Create audio + PDF
audio_path = text_to_speech(summary)
pdf_path = create_pdf(summary, filename)
# Clean temp file
os.unlink(tmp_path)
# Prepare response
response = {"summary": summary}
if audio_path:
response["audioUrl"] = f"/files/{os.path.basename(audio_path)}"
if pdf_path:
response["pdfUrl"] = f"/files/{os.path.basename(pdf_path)}"
return response
except Exception as e:
raise Exception(f"Summarization failed: {str(e)}")
|