File size: 3,615 Bytes
95c2451
5b4fc38
40485d4
cf9a79a
3e87c53
3fb07d9
3e87c53
653c3ae
3e87c53
653c3ae
e5b6ad2
653c3ae
e5b6ad2
 
 
1e83db4
a74f8b0
3e87c53
12d05c0
3e87c53
3fb07d9
12d05c0
af32fa4
653c3ae
40485d4
af32fa4
653c3ae
cf9a79a
12d05c0
af32fa4
653c3ae
af32fa4
 
653c3ae
cf9a79a
12d05c0
af32fa4
653c3ae
af32fa4
 
 
 
 
 
 
653c3ae
cf9a79a
12d05c0
af32fa4
653c3ae
af32fa4
 
 
 
653c3ae
 
af32fa4
 
653c3ae
6dfac5c
af32fa4
653c3ae
af32fa4
3fb07d9
653c3ae
3e87c53
12d05c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95c2451
 
12d05c0
3e87c53
12d05c0
e5b6ad2
3e87c53
 
95c2451
3e87c53
95c2451
3e87c53
 
653c3ae
3e87c53
3fb07d9
653c3ae
5b4fc38
653c3ae
 
5b4fc38
 
 
653c3ae
5b4fc38
 
653c3ae
12d05c0
5b4fc38
3e87c53
653c3ae
12d05c0
653c3ae
 
 
5b4fc38
3e87c53
5b4fc38
653c3ae
5b4fc38
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from fastapi import FastAPI
from fastapi.responses import RedirectResponse
import fitz  # PyMuPDF
import docx
import pptx
import openpyxl
import io
from PIL import Image
import gradio as gr
from transformers import pipeline

# Load models
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
image_captioner = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")

app = FastAPI()

# -------------------------
# Extraction Functions
# -------------------------

def extract_text_from_pdf(data: bytes):
    try:
        with fitz.open(stream=data, filetype="pdf") as doc:
            return "\n".join([page.get_text() for page in doc])
    except Exception as e:
        return f"❌ PDF error: {e}"

def extract_text_from_docx(data: bytes):
    try:
        doc = docx.Document(io.BytesIO(data))
        return "\n".join(p.text for p in doc.paragraphs if p.text.strip())
    except Exception as e:
        return f"❌ DOCX error: {e}"

def extract_text_from_pptx(data: bytes):
    try:
        prs = pptx.Presentation(io.BytesIO(data))
        text = []
        for slide in prs.slides:
            for shape in slide.shapes:
                if hasattr(shape, "text"):
                    text.append(shape.text)
        return "\n".join(text)
    except Exception as e:
        return f"❌ PPTX error: {e}"

def extract_text_from_xlsx(data: bytes):
    try:
        wb = openpyxl.load_workbook(io.BytesIO(data))
        text = []
        for sheet in wb.sheetnames:
            ws = wb[sheet]
            for row in ws.iter_rows(values_only=True):
                line = " ".join(str(cell) for cell in row if cell)
                text.append(line)
        return "\n".join(text)
    except Exception as e:
        return f"❌ XLSX error: {e}"

# -------------------------
# Main Logic
# -------------------------

def summarize_document(file):
    try:
        filename = file.name.lower()
        data = file.read()

        if filename.endswith(".pdf"):
            text = extract_text_from_pdf(data)
        elif filename.endswith(".docx"):
            text = extract_text_from_docx(data)
        elif filename.endswith(".pptx"):
            text = extract_text_from_pptx(data)
        elif filename.endswith(".xlsx"):
            text = extract_text_from_xlsx(data)
        else:
            return "❌ Unsupported file format."

        if not isinstance(text, str) or not text.strip():
            return "❗ No extractable text."

        summary = summarizer(text[:3000], max_length=150, min_length=30, do_sample=False)
        return f"πŸ“„ Summary:\n{summary[0]['summary_text']}"

    except Exception as e:
        return f"⚠️ Unexpected error: {e}"

def interpret_image(image):
    try:
        return f"πŸ–ΌοΈ Caption:\n{image_captioner(image)[0]['generated_text']}"
    except Exception as e:
        return f"⚠️ Image captioning error: {e}"

# -------------------------
# Gradio Interfaces
# -------------------------

doc_summary = gr.Interface(
    fn=summarize_document,
    inputs=gr.File(label="Upload a Document"),
    outputs="text",
    title="πŸ“„ Document Summarizer"
)

img_caption = gr.Interface(
    fn=interpret_image,
    inputs=gr.Image(type="pil", label="Upload an Image"),
    outputs="text",
    title="πŸ–ΌοΈ Image Interpreter"
)

# -------------------------
# FastAPI + Gradio Mount
# -------------------------

demo = gr.TabbedInterface([doc_summary, img_caption], ["Document Summary", "Image Captioning"])
app = gr.mount_gradio_app(app, demo, path="/")

@app.get("/")
def root():
    return RedirectResponse(url="/")