import streamlit as st import matplotlib.pyplot as plt import pandas as pd import torch import plotly.express as px from sklearn.decomposition import PCA from sklearn.manifold import TSNE from transformers import AutoConfig, AutoTokenizer # Page configuration st.set_page_config( page_title="Transformer Visualizer", page_icon="🧠", layout="wide", initial_sidebar_state="expanded" ) # Custom CSS styling st.markdown(""" """, unsafe_allow_html=True) # Enhanced Model database MODELS = { "BERT": {"model_name": "bert-base-uncased", "type": "Encoder", "layers": 12, "heads": 12, "params": 109.48, "downloads": "10M+", "release_year": 2018, "gpu_req": "4GB+", "cpu_req": "4 cores+", "ram_req": "8GB+"}, "GPT-2": {"model_name": "gpt2", "type": "Decoder", "layers": 12, "heads": 12, "params": 117, "downloads": "8M+", "release_year": 2019, "gpu_req": "6GB+", "cpu_req": "4 cores+", "ram_req": "12GB+"}, "T5-Small": {"model_name": "t5-small", "type": "Seq2Seq", "layers": 6, "heads": 8, "params": 60, "downloads": "5M+", "release_year": 2019, "gpu_req": "3GB+", "cpu_req": "2 cores+", "ram_req": "6GB+"}, "RoBERTa": {"model_name": "roberta-base", "type": "Encoder", "layers": 12, "heads": 12, "params": 125, "downloads": "7M+", "release_year": 2019, "gpu_req": "5GB+", "cpu_req": "4 cores+", "ram_req": "10GB+"}, "DistilBERT": {"model_name": "distilbert-base-uncased", "type": "Encoder", "layers": 6, "heads": 12, "params": 66, "downloads": "9M+", "release_year": 2019, "gpu_req": "2GB+", "cpu_req": "2 cores+", "ram_req": "4GB+"}, "ALBERT": {"model_name": "albert-base-v2", "type": "Encoder", "layers": 12, "heads": 12, "params": 11.8, "downloads": "3M+", "release_year": 2019, "gpu_req": "1GB+", "cpu_req": "1 core+", "ram_req": "2GB+"}, "ELECTRA": {"model_name": "google/electra-small-discriminator", "type": "Encoder", "layers": 12, "heads": 12, "params": 13.5, "downloads": "2M+", "release_year": 2020, "gpu_req": "2GB+", "cpu_req": "2 cores+", "ram_req": "4GB+"}, "XLNet": {"model_name": "xlnet-base-cased", "type": "AutoRegressive", "layers": 12, "heads": 12, "params": 110, "downloads": "4M+", "release_year": 2019, "gpu_req": "5GB+", "cpu_req": "4 cores+", "ram_req": "8GB+"}, "BART": {"model_name": "facebook/bart-base", "type": "Seq2Seq", "layers": 6, "heads": 16, "params": 139, "downloads": "6M+", "release_year": 2020, "gpu_req": "6GB+", "cpu_req": "4 cores+", "ram_req": "12GB+"}, "DeBERTa": {"model_name": "microsoft/deberta-base", "type": "Encoder", "layers": 12, "heads": 12, "params": 139, "downloads": "3M+", "release_year": 2021, "gpu_req": "8GB+", "cpu_req": "6 cores+", "ram_req": "16GB+"} } def get_model_config(model_name): config = AutoConfig.from_pretrained(MODELS[model_name]["model_name"]) return config def plot_model_comparison(selected_model): model_names = list(MODELS.keys()) params = [m["params"] for m in MODELS.values()] fig, ax = plt.subplots(figsize=(10, 6)) bars = ax.bar(model_names, params) index = list(MODELS.keys()).index(selected_model) bars[index].set_color('#00ff00') ax.set_ylabel('Parameters (Millions)', color='white') ax.set_title('Model Size Comparison', color='white') ax.tick_params(axis='x', rotation=45, colors='white') ax.tick_params(axis='y', colors='white') ax.set_facecolor('#2c2c2c') fig.patch.set_facecolor('#2c2c2c') st.pyplot(fig) def visualize_architecture(model_info): architecture = [] model_type = model_info["type"] layers = model_info["layers"] heads = model_info["heads"] architecture.append("Input") architecture.append("│") architecture.append("▼") if model_type == "Encoder": architecture.append("[Embedding Layer]") for i in range(layers): architecture.extend([ f"Encoder Layer {i+1}", "├─ Multi-Head Attention", f"│ └─ {heads} Heads", "├─ Layer Normalization", "└─ Feed Forward Network", "│", "▼" ]) architecture.append("[Output]") elif model_type == "Decoder": architecture.append("[Embedding Layer]") for i in range(layers): architecture.extend([ f"Decoder Layer {i+1}", "├─ Masked Multi-Head Attention", f"│ └─ {heads} Heads", "├─ Layer Normalization", "└─ Feed Forward Network", "│", "▼" ]) architecture.append("[Output]") elif model_type == "Seq2Seq": architecture.append("Encoder Stack") for i in range(layers): architecture.extend([ f"Encoder Layer {i+1}", "├─ Self-Attention", "└─ Feed Forward Network", "│", "▼" ]) architecture.append("→→→ [Context] →→→") architecture.append("Decoder Stack") for i in range(layers): architecture.extend([ f"Decoder Layer {i+1}", "├─ Masked Self-Attention", "├─ Encoder-Decoder Attention", "└─ Feed Forward Network", "│", "▼" ]) architecture.append("[Output]") return "\n".join(architecture) def visualize_attention_patterns(): fig, ax = plt.subplots(figsize=(8, 6)) data = torch.randn(5, 5) ax.imshow(data, cmap='viridis') ax.set_title('Attention Patterns Example', color='white') ax.set_facecolor('#2c2c2c') fig.patch.set_facecolor('#2c2c2c') st.pyplot(fig) def embedding_projector(): st.subheader("🔍 Embedding Projector") # Sample words for visualization words = ["king", "queen", "man", "woman", "computer", "algorithm", "neural", "network", "language", "processing"] # Create dummy embeddings (3D for visualization) embeddings = torch.randn(len(words), 256) # Dimensionality reduction method = st.selectbox("Reduction Method", ["PCA", "t-SNE"]) if method == "PCA": reduced = PCA(n_components=3).fit_transform(embeddings) else: reduced = TSNE(n_components=3).fit_transform(embeddings.numpy()) # Create interactive 3D plot fig = px.scatter_3d( x=reduced[:,0], y=reduced[:,1], z=reduced[:,2], text=words, title=f"Word Embeddings ({method})" ) fig.update_traces(marker=dict(size=5), textposition='top center') st.plotly_chart(fig, use_container_width=True) def hardware_recommendations(model_info): st.subheader("💻 Hardware Recommendations") col1, col2, col3 = st.columns(3) with col1: st.metric("Minimum GPU", model_info.get("gpu_req", "4GB+")) with col2: st.metric("CPU Recommendation", model_info.get("cpu_req", "4 cores+")) with col3: st.metric("RAM Requirement", model_info.get("ram_req", "8GB+")) st.markdown(""" **Cloud Recommendations:** - AWS: g4dn.xlarge instance - GCP: n1-standard-4 with T4 GPU - Azure: Standard_NC4as_T4_v3 """) def model_zoo_statistics(): st.subheader("📊 Model Zoo Statistics") df = pd.DataFrame.from_dict(MODELS, orient='index') st.dataframe( df[["release_year", "downloads", "params"]], column_config={ "release_year": "Release Year", "downloads": "Downloads", "params": "Params (M)" }, use_container_width=True, height=400 ) fig = px.bar(df, x=df.index, y="params", title="Model Parameters Comparison") st.plotly_chart(fig, use_container_width=True) def memory_usage_estimator(model_info): st.subheader("🧮 Memory Usage Estimator") precision = st.selectbox("Precision", ["FP32", "FP16", "INT8"]) batch_size = st.slider("Batch size", 1, 128, 8) # Memory calculation bytes_map = {"FP32": 4, "FP16": 2, "INT8": 1} estimated_memory = (model_info["params"] * 1e6 * bytes_map[precision] * batch_size) / (1024**3) col1, col2 = st.columns(2) with col1: st.metric("Estimated VRAM", f"{estimated_memory:.1f} GB") with col2: st.metric("Recommended GPU", "RTX 3090" if estimated_memory > 24 else "RTX 3060") st.progress(min(estimated_memory/40, 1.0), text="GPU Memory Utilization (of 40GB GPU)") def main(): st.title("🧠 Transformer Model Visualizer") selected_model = st.sidebar.selectbox("Select Model", list(MODELS.keys())) model_info = MODELS[selected_model] config = get_model_config(selected_model) tokenizer = AutoTokenizer.from_pretrained(model_info["model_name"]) col1, col2, col3, col4 = st.columns(4) with col1: st.metric("Model Type", model_info["type"]) with col2: st.metric("Layers", model_info["layers"]) with col3: st.metric("Attention Heads", model_info["heads"]) with col4: st.metric("Parameters", f"{model_info['params']}M") # Updated tabs with all 7 sections tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs([ "Model Structure", "Comparison", "Model Attention", "Tokenization", "Embeddings", "Hardware", "Stats & Memory" ]) with tab1: st.subheader("Architecture Diagram") architecture = visualize_architecture(model_info) st.markdown(f"
{architecture}
", unsafe_allow_html=True) st.markdown(""" **Legend:** - **Multi-Head Attention**: Self-attention mechanism with multiple parallel heads - **Layer Normalization**: Normalization operation between layers - **Feed Forward Network**: Position-wise fully connected network - **Masked Attention**: Attention with future token masking """) with tab2: st.subheader("Model Size Comparison") plot_model_comparison(selected_model) with tab3: st.subheader("Model-specific Visualizations") visualize_attention_patterns() if selected_model == "BERT": st.write("BERT-specific visualization example") elif selected_model == "GPT-2": st.write("GPT-2 attention mask visualization") with tab4: st.subheader("📝 Tokenization Visualization") input_text = st.text_input("Enter Text:", "Hello, how are you?") col1, col2 = st.columns(2) with col1: st.markdown("**Tokenized Output**") tokens = tokenizer.tokenize(input_text) st.write(tokens) with col2: st.markdown("**Token IDs**") encoded_ids = tokenizer.encode(input_text) st.write(encoded_ids) st.markdown("**Token-ID Mapping**") token_data = pd.DataFrame({ "Token": tokens, "ID": encoded_ids[1:-1] if tokenizer.cls_token else encoded_ids }) st.dataframe( token_data, height=150, use_container_width=True, column_config={ "Token": "Token", "ID": {"header": "ID", "help": "Numerical representation of the token"} } ) st.markdown(f""" **Tokenizer Info:** - Vocabulary size: `{tokenizer.vocab_size}` - Special tokens: `{tokenizer.all_special_tokens}` - Padding token: `{tokenizer.pad_token}` - Max length: `{tokenizer.model_max_length}` """) with tab5: embedding_projector() with tab6: hardware_recommendations(model_info) with tab7: model_zoo_statistics() memory_usage_estimator(model_info) if __name__ == "__main__": main()