import streamlit as st import matplotlib.pyplot as plt import pandas as pd import torch from transformers import AutoConfig # Page configuration st.set_page_config( page_title="Transformer Visualizer", page_icon="🧠", layout="wide", initial_sidebar_state="expanded" ) # Custom CSS styling st.markdown(""" """, unsafe_allow_html=True) # Model database MODELS = { "BERT": {"model_name": "bert-base-uncased", "type": "Encoder", "layers": 12, "heads": 12, "params": 109.48}, "GPT-2": {"model_name": "gpt2", "type": "Decoder", "layers": 12, "heads": 12, "params": 117}, "T5-Small": {"model_name": "t5-small", "type": "Seq2Seq", "layers": 6, "heads": 8, "params": 60}, "RoBERTa": {"model_name": "roberta-base", "type": "Encoder", "layers": 12, "heads": 12, "params": 125}, "DistilBERT": {"model_name": "distilbert-base-uncased", "type": "Encoder", "layers": 6, "heads": 12, "params": 66}, "ALBERT": {"model_name": "albert-base-v2", "type": "Encoder", "layers": 12, "heads": 12, "params": 11.8}, "ELECTRA": {"model_name": "google/electra-small-discriminator", "type": "Encoder", "layers": 12, "heads": 12, "params": 13.5}, "XLNet": {"model_name": "xlnet-base-cased", "type": "AutoRegressive", "layers": 12, "heads": 12, "params": 110}, "BART": {"model_name": "facebook/bart-base", "type": "Seq2Seq", "layers": 6, "heads": 16, "params": 139}, "DeBERTa": {"model_name": "microsoft/deberta-base", "type": "Encoder", "layers": 12, "heads": 12, "params": 139} } def get_model_config(model_name): config = AutoConfig.from_pretrained(MODELS[model_name]["model_name"]) return config def plot_model_comparison(selected_model): model_names = list(MODELS.keys()) params = [m["params"] for m in MODELS.values()] fig, ax = plt.subplots(figsize=(10, 6)) bars = ax.bar(model_names, params) # Highlight selected model index = list(MODELS.keys()).index(selected_model) bars[index].set_color('#00ff00') ax.set_ylabel('Parameters (Millions)', color='white') ax.set_title('Model Size Comparison', color='white') ax.tick_params(axis='x', rotation=45, colors='white') ax.tick_params(axis='y', colors='white') ax.set_facecolor('#2c2c2c') fig.patch.set_facecolor('#2c2c2c') st.pyplot(fig) def visualize_attention_patterns(): # Simplified attention patterns visualization fig, ax = plt.subplots(figsize=(8, 6)) data = torch.randn(5, 5) ax.imshow(data, cmap='viridis') ax.set_title('Attention Patterns Example', color='white') ax.set_facecolor('#2c2c2c') fig.patch.set_facecolor('#2c2c2c') st.pyplot(fig) def main(): st.title("🧠 Transformer Model Visualizer") # Model selection selected_model = st.sidebar.selectbox("Select Model", list(MODELS.keys())) # Model details model_info = MODELS[selected_model] config = get_model_config(selected_model) # Display metrics col1, col2, col3, col4 = st.columns(4) with col1: st.metric("Model Type", model_info["type"]) with col2: st.metric("Layers", model_info["layers"]) with col3: st.metric("Attention Heads", model_info["heads"]) with col4: st.metric("Parameters", f"{model_info['params']}M") # Visualization tabs tab1, tab2, tab3 = st.tabs(["Model Structure", "Comparison", "Model Specific"]) with tab1: st.subheader("Architecture Diagram") st.image("https://upload.wikimedia.org/wikipedia/commons/thumb/8/8a/Transformer_model.svg/1200px-Transformer_model.svg.png", use_container_width=True) # Changed parameter here with tab2: st.subheader("Model Size Comparison") plot_model_comparison(selected_model) with tab3: st.subheader("Model-specific Visualizations") visualize_attention_patterns() if selected_model == "BERT": st.write("BERT-specific visualization example") elif selected_model == "GPT-2": st.write("GPT-2 attention mask visualization") if __name__ == "__main__": main()