File size: 8,190 Bytes
5e13a93
 
 
 
 
 
e547834
5e13a93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e547834
5e13a93
 
 
 
 
 
 
 
 
 
 
 
 
98d16e6
5e13a93
 
 
 
 
 
 
98d16e6
5e13a93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98d16e6
5e13a93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e547834
 
5e13a93
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import streamlit as st
import time
import requests
from streamlit.components.v1 import html
import os
from dotenv import load_dotenv

# Voice input dependencies
import torchaudio
import numpy as np
import torch
from io import BytesIO
import hashlib
from audio_recorder_streamlit import audio_recorder
from transformers import pipeline

######################################
# Voice Input Helper Functions
######################################

@st.cache_resource
def load_voice_model():
    return pipeline("automatic-speech-recognition", model="openai/whisper-base")

def process_audio(audio_bytes):
    waveform, sample_rate = torchaudio.load(BytesIO(audio_bytes))
    if waveform.shape[0] > 1:
        waveform = torch.mean(waveform, dim=0, keepdim=True)
    if sample_rate != 16000:
        resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
        waveform = resampler(waveform)
    return {"raw": waveform.numpy().squeeze(), "sampling_rate": 16000}

def get_voice_transcription(state_key):
    if state_key not in st.session_state:
        st.session_state[state_key] = ""
    audio_bytes = audio_recorder(
        key=state_key + "_audio",
        pause_threshold=0.8,
        text="๐ŸŽ™๏ธ Speak your message",
        recording_color="#e8b62c",
        neutral_color="#6aa36f"
    )
    if audio_bytes:
        current_hash = hashlib.md5(audio_bytes).hexdigest()
        last_hash_key = state_key + "_last_hash"
        if st.session_state.get(last_hash_key, "") != current_hash:
            st.session_state[last_hash_key] = current_hash
            try:
                audio_input = process_audio(audio_bytes)
                whisper = load_voice_model()
                transcribed_text = whisper(audio_input)["text"]
                st.info(f"๐Ÿ“ Transcribed: {transcribed_text}")
                st.session_state[state_key] += (" " + transcribed_text).strip()
                st.experimental_rerun()
            except Exception as e:
                st.error(f"Voice input error: {str(e)}")
    return st.session_state[state_key]

######################################
# Game Functions & Styling
######################################

@st.cache_resource
def get_help_agent():
    return pipeline("conversational", model="facebook/blenderbot-400M-distill")

def inject_custom_css():
    st.markdown("""
    <style>
        @import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600;700&display=swap');
        * { font-family: 'Inter', sans-serif; }
        .title { font-size: 2.8rem !important; font-weight: 800 !important;
                 background: linear-gradient(45deg, #6C63FF, #3B82F6);
                 -webkit-background-clip: text; -webkit-text-fill-color: transparent;
                 text-align: center; margin: 1rem 0; }
        .subtitle { font-size: 1.1rem; text-align: center; color: #64748B; margin-bottom: 2.5rem; }
        .question-box { background: white; border-radius: 20px; padding: 2rem; margin: 1.5rem 0;
                        box-shadow: 0 10px 25px rgba(0,0,0,0.08); border: 1px solid #e2e8f0; color: black; }
        .input-box { background: white; border-radius: 12px; padding: 1.5rem; margin: 1rem 0;
                     box-shadow: 0 4px 6px rgba(0,0,0,0.05); }
        .stTextInput input { border: 2px solid #e2e8f0 !important; border-radius: 10px !important;
                              padding: 12px 16px !important; }
        button { background: linear-gradient(45deg, #6C63FF, #3B82F6) !important;
                 color: white !important; border-radius: 10px !important;
                 padding: 12px 24px !important; font-weight: 600; }
        .final-reveal { font-size: 2.8rem;
                        background: linear-gradient(45deg, #6C63FF, #3B82F6);
                        -webkit-background-clip: text; -webkit-text-fill-color: transparent;
                        text-align: center; margin: 2rem 0; font-weight: 800; }
    </style>
    """, unsafe_allow_html=True)

def show_confetti():
    html("""
    <canvas id="confetti-canvas" class="confetti"></canvas>
    <script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/confetti.browser.min.js"></script>
    <script>
    const count = 200;
    const defaults = { origin: { y: 0.7 }, zIndex: 1050 };
    function fire(particleRatio, opts) {
        confetti(Object.assign({}, defaults, opts, {
            particleCount: Math.floor(count * particleRatio)
        }));
    }
    fire(0.25, { spread: 26, startVelocity: 55 });
    fire(0.2, { spread: 60 });
    fire(0.35, { spread: 100, decay: 0.91, scalar: 0.8 });
    fire(0.1, { spread: 120, startVelocity: 25, decay: 0.92, scalar: 1.2 });
    fire(0.1, { spread: 120, startVelocity: 45 });
    </script>
    """)

def ask_llama(conversation_history, category, is_final_guess=False):
    api_url = "https://api.groq.com/openai/v1/chat/completions"
    headers = {
        "Authorization": f"Bearer {os.getenv('GROQ_API_KEY')}",
        "Content-Type": "application/json"
    }
    system_prompt = f"""You're playing 20 questions to guess a {category}. Rules:
1. Ask strategic, non-repeating yes/no questions to narrow down.
2. Use all previous answers smartly.
3. If you're 80%+ sure, say: Final Guess: [your guess]
4. For places: ask about continent, country, landmarks, etc.
5. For people: ask if real, profession, gender, etc.
6. For objects: ask about use, size, material, etc."""
    
    prompt = f"""Based on these answers about a {category}, provide ONLY your final guess with no extra text:
{conversation_history}""" if is_final_guess else "Ask your next smart yes/no question."

    messages = [{"role": "system", "content": system_prompt}]
    messages += conversation_history
    messages.append({"role": "user", "content": prompt})

    data = {
        "model": "llama-3-70b-8192",
        "messages": messages,
        "temperature": 0.8,
        "max_tokens": 100
    }

    try:
        res = requests.post(api_url, headers=headers, json=data)
        res.raise_for_status()
        return res.json()["choices"][0]["message"]["content"]
    except Exception as e:
        st.error(f"โŒ LLaMA API error: {e}")
        return "..."

######################################
# Main App Logic Here (UI, Game Loop)
######################################

def main():
    load_dotenv()
    inject_custom_css()

    st.title("๐ŸŽฎ Guess It! - 20 Questions Game")
    st.markdown("<div class='subtitle'>Think of a person, place, or object. LLaMA will try to guess it!</div>", unsafe_allow_html=True)

    category = st.selectbox("Category of your secret:", ["Person", "Place", "Object"])
    
    if "conversation" not in st.session_state:
        st.session_state.conversation = []
        st.session_state.last_bot_msg = ""

    if st.button("๐Ÿ”„ Restart Game"):
        st.session_state.conversation = []
        st.session_state.last_bot_msg = ""
        st.rerun()

    if not st.session_state.conversation:
        st.session_state.last_bot_msg = ask_llama([], category)
        st.session_state.conversation.append({"role": "assistant", "content": st.session_state.last_bot_msg})

    st.markdown(f"<div class='question-box'><strong>LLaMA:</strong> {st.session_state.last_bot_msg}</div>", unsafe_allow_html=True)

    user_input = get_voice_transcription("voice_input") or st.text_input("๐Ÿ’ฌ Your answer (yes/no/sometimes):")

    if st.button("Submit Answer") and user_input:
        st.session_state.conversation.append({"role": "user", "content": user_input})
        with st.spinner("Thinking..."):
            response = ask_llama(st.session_state.conversation, category)
        st.session_state.last_bot_msg = response
        st.session_state.conversation.append({"role": "assistant", "content": response})
        st.rerun()

    if st.button("๐Ÿค” Make Final Guess"):
        with st.spinner("Making final guess..."):
            final_guess = ask_llama(st.session_state.conversation, category, is_final_guess=True)
            st.markdown(f"<div class='final-reveal'>๐Ÿคฏ Final Guess: <strong>{final_guess}</strong></div>", unsafe_allow_html=True)
            show_confetti()

if __name__ == "__main__":
    main()