Spaces:
Running
Running
File size: 8,190 Bytes
5e13a93 e547834 5e13a93 e547834 5e13a93 98d16e6 5e13a93 98d16e6 5e13a93 98d16e6 5e13a93 e547834 5e13a93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import streamlit as st
import time
import requests
from streamlit.components.v1 import html
import os
from dotenv import load_dotenv
# Voice input dependencies
import torchaudio
import numpy as np
import torch
from io import BytesIO
import hashlib
from audio_recorder_streamlit import audio_recorder
from transformers import pipeline
######################################
# Voice Input Helper Functions
######################################
@st.cache_resource
def load_voice_model():
return pipeline("automatic-speech-recognition", model="openai/whisper-base")
def process_audio(audio_bytes):
waveform, sample_rate = torchaudio.load(BytesIO(audio_bytes))
if waveform.shape[0] > 1:
waveform = torch.mean(waveform, dim=0, keepdim=True)
if sample_rate != 16000:
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
waveform = resampler(waveform)
return {"raw": waveform.numpy().squeeze(), "sampling_rate": 16000}
def get_voice_transcription(state_key):
if state_key not in st.session_state:
st.session_state[state_key] = ""
audio_bytes = audio_recorder(
key=state_key + "_audio",
pause_threshold=0.8,
text="๐๏ธ Speak your message",
recording_color="#e8b62c",
neutral_color="#6aa36f"
)
if audio_bytes:
current_hash = hashlib.md5(audio_bytes).hexdigest()
last_hash_key = state_key + "_last_hash"
if st.session_state.get(last_hash_key, "") != current_hash:
st.session_state[last_hash_key] = current_hash
try:
audio_input = process_audio(audio_bytes)
whisper = load_voice_model()
transcribed_text = whisper(audio_input)["text"]
st.info(f"๐ Transcribed: {transcribed_text}")
st.session_state[state_key] += (" " + transcribed_text).strip()
st.experimental_rerun()
except Exception as e:
st.error(f"Voice input error: {str(e)}")
return st.session_state[state_key]
######################################
# Game Functions & Styling
######################################
@st.cache_resource
def get_help_agent():
return pipeline("conversational", model="facebook/blenderbot-400M-distill")
def inject_custom_css():
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600;700&display=swap');
* { font-family: 'Inter', sans-serif; }
.title { font-size: 2.8rem !important; font-weight: 800 !important;
background: linear-gradient(45deg, #6C63FF, #3B82F6);
-webkit-background-clip: text; -webkit-text-fill-color: transparent;
text-align: center; margin: 1rem 0; }
.subtitle { font-size: 1.1rem; text-align: center; color: #64748B; margin-bottom: 2.5rem; }
.question-box { background: white; border-radius: 20px; padding: 2rem; margin: 1.5rem 0;
box-shadow: 0 10px 25px rgba(0,0,0,0.08); border: 1px solid #e2e8f0; color: black; }
.input-box { background: white; border-radius: 12px; padding: 1.5rem; margin: 1rem 0;
box-shadow: 0 4px 6px rgba(0,0,0,0.05); }
.stTextInput input { border: 2px solid #e2e8f0 !important; border-radius: 10px !important;
padding: 12px 16px !important; }
button { background: linear-gradient(45deg, #6C63FF, #3B82F6) !important;
color: white !important; border-radius: 10px !important;
padding: 12px 24px !important; font-weight: 600; }
.final-reveal { font-size: 2.8rem;
background: linear-gradient(45deg, #6C63FF, #3B82F6);
-webkit-background-clip: text; -webkit-text-fill-color: transparent;
text-align: center; margin: 2rem 0; font-weight: 800; }
</style>
""", unsafe_allow_html=True)
def show_confetti():
html("""
<canvas id="confetti-canvas" class="confetti"></canvas>
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/confetti.browser.min.js"></script>
<script>
const count = 200;
const defaults = { origin: { y: 0.7 }, zIndex: 1050 };
function fire(particleRatio, opts) {
confetti(Object.assign({}, defaults, opts, {
particleCount: Math.floor(count * particleRatio)
}));
}
fire(0.25, { spread: 26, startVelocity: 55 });
fire(0.2, { spread: 60 });
fire(0.35, { spread: 100, decay: 0.91, scalar: 0.8 });
fire(0.1, { spread: 120, startVelocity: 25, decay: 0.92, scalar: 1.2 });
fire(0.1, { spread: 120, startVelocity: 45 });
</script>
""")
def ask_llama(conversation_history, category, is_final_guess=False):
api_url = "https://api.groq.com/openai/v1/chat/completions"
headers = {
"Authorization": f"Bearer {os.getenv('GROQ_API_KEY')}",
"Content-Type": "application/json"
}
system_prompt = f"""You're playing 20 questions to guess a {category}. Rules:
1. Ask strategic, non-repeating yes/no questions to narrow down.
2. Use all previous answers smartly.
3. If you're 80%+ sure, say: Final Guess: [your guess]
4. For places: ask about continent, country, landmarks, etc.
5. For people: ask if real, profession, gender, etc.
6. For objects: ask about use, size, material, etc."""
prompt = f"""Based on these answers about a {category}, provide ONLY your final guess with no extra text:
{conversation_history}""" if is_final_guess else "Ask your next smart yes/no question."
messages = [{"role": "system", "content": system_prompt}]
messages += conversation_history
messages.append({"role": "user", "content": prompt})
data = {
"model": "llama-3-70b-8192",
"messages": messages,
"temperature": 0.8,
"max_tokens": 100
}
try:
res = requests.post(api_url, headers=headers, json=data)
res.raise_for_status()
return res.json()["choices"][0]["message"]["content"]
except Exception as e:
st.error(f"โ LLaMA API error: {e}")
return "..."
######################################
# Main App Logic Here (UI, Game Loop)
######################################
def main():
load_dotenv()
inject_custom_css()
st.title("๐ฎ Guess It! - 20 Questions Game")
st.markdown("<div class='subtitle'>Think of a person, place, or object. LLaMA will try to guess it!</div>", unsafe_allow_html=True)
category = st.selectbox("Category of your secret:", ["Person", "Place", "Object"])
if "conversation" not in st.session_state:
st.session_state.conversation = []
st.session_state.last_bot_msg = ""
if st.button("๐ Restart Game"):
st.session_state.conversation = []
st.session_state.last_bot_msg = ""
st.rerun()
if not st.session_state.conversation:
st.session_state.last_bot_msg = ask_llama([], category)
st.session_state.conversation.append({"role": "assistant", "content": st.session_state.last_bot_msg})
st.markdown(f"<div class='question-box'><strong>LLaMA:</strong> {st.session_state.last_bot_msg}</div>", unsafe_allow_html=True)
user_input = get_voice_transcription("voice_input") or st.text_input("๐ฌ Your answer (yes/no/sometimes):")
if st.button("Submit Answer") and user_input:
st.session_state.conversation.append({"role": "user", "content": user_input})
with st.spinner("Thinking..."):
response = ask_llama(st.session_state.conversation, category)
st.session_state.last_bot_msg = response
st.session_state.conversation.append({"role": "assistant", "content": response})
st.rerun()
if st.button("๐ค Make Final Guess"):
with st.spinner("Making final guess..."):
final_guess = ask_llama(st.session_state.conversation, category, is_final_guess=True)
st.markdown(f"<div class='final-reveal'>๐คฏ Final Guess: <strong>{final_guess}</strong></div>", unsafe_allow_html=True)
show_confetti()
if __name__ == "__main__":
main()
|